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CHAPTER I

Introduction

Control systems are fundamental to making modern technology possible. Indeed, con­

trol systems touch our lives, both directly and indirectly, many times a day. Control 

systems effect our lives directly through: household appliances such as microwave 

ovens, modern washers and dryers, and VCR’s; climate control systems (heating, 

cooling, and humidity regulation) in our homes, offices, and automobiles; and mod­

ern transportation systems including buses, airplanes, trains, and automobiles. The 

indirect ways that control systems touch our lives include all of the above and many 

more; because none of these things could have been manufactured without control 

systems. Which brings us to the focus of this dissertation: control of manufacturing 

systems and machinery. Specifically, we will be concerned with improving the per­

formance and reliability of machines that repeat a given task over and over again. 

The branch of control theory dedicated to enhancing the performance and reliability 

of systems that perform the same action over and over is called “repetitive control 

theory”. The class of such systems encompasses much more than just manufacturing 

machinery and includes such everyday modern conveniences as computer disk drives. 

The specific application we address is an electro-hydraulic material tester, see [56]. 

However, the techniques developed have universal applicability.
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1.1 Feedback control systems

A few of the applications of control theory mentioned above perform satisfactorily us­

ing “open loop” control. Open loop control is a control scheme where a “command” is 

given to the system and it is simply assumed that the system “obeys” the command. 

When the mathematical model of the system is both highly accurate and invariant 

under changing operating conditions and precise operation is not required, open loop 

control can be effective. An example of such a  system is your favorite vending ma­

chine. While there are “feedback controllers” internal to the vending machine, the 

external behavior is open loop. That is, the machine does not check whether the pre­

vious purchase has been removed before going ahead and sending out the requested 

merchandise. A “feedback controller” is a controller that senses the “output” of the 

system and uses this information along with any externally generated command to 

determine the appropriate “actuator” input. The actuator is the device by which 

the controller exerts influence on the system. Most typically, the actuator is an elec­

tric motor, e.g. the compressor motor that comes on to cool your refrigerator when 

the difference between the external command (the desired tem perature setting) and 

the measured (sensed) output (the temperature inside the refrigerator) exceeds some 

fixed limit. Feedback control must be used whenever there is enough uncertainty 

about the system that we can’t  just turn the controller loose. For instance, in order 

for a refrigerator’s tem perature to be adequately regulated using open loop control, 

the engineer would have to know: the exact temperature of the room in which the 

refrigerator would be operating, when and for how long the refrigerator would be
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opened, when, and how much, food would be put in, etc. The refrigerator is an 

extreme example, where the operating environment is completely unpredictable, but 

other factors can cause sufficient uncertainty to require feedback control. There can 

be significant uncertainty about the nominal plant model, irrespective of changes in 

the operating environment.

Consider modern automobiles and their computer (feedback) controlled ignition 

systems. You’ve probably noticed that there is very little reduction in overall perfor­

mance, with respect to starting and running smoothly, until the electrical components, 

such as wires or plugs, are completely worn out. In the “good old days” , when the 

ignition systems were essentially open loop, a single bad spark plug would make an 

engine run rough. This type of internal change in the system, that happens over rel­

atively long periods of time, is one source of what is known as “model uncertainty”. 

There are many sources of model uncertainty, most of which are specific to a given 

plant. The fact is, we never have a  completely accurate mathematical description of 

any plant. That is why we call the mathematical description a model of the plant. 

When both the operating environment and the plant model are known with sufficient 

accuracy, open loop control can be used. The reason that feedback control is such 

a big deal, aside from the greatly improved performance in the face of uncertainties, 

is that feedback control can make a system go “unstable” . Where, by unstable, we 

mean that some system property will grow without bound, or at least exceed accept­

able limits. The example of feedback resulting in instability that almost everyone 

is familiar with is the horrible scream that ensues when a  microphone is placed in
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front of a loud speaker to which it is connected. This tendency to cause instability 

is what makes feedback control so challenging. Furthermore, since one of the main 

reasons that we are using feedback control is the presence of significant uncertainty, 

we must ensure the robust stability of the feedback control system in the face of these 

uncertainties.

1.2 Repetitive control

Repetitive control is a method for obtaining “good” system performance when the 

system is subjected to periodic external signals. W hat we mean by good performance 

depends on whether the external signal is a command (reference signal) that we want 

the output of the system to follow (track), or a disturbance input (variation in the 

operating environment) that we want the output to ignore (reject). The basic diagram 

illustrating the standard control problem is shown in Figure 1. The reference signal, 

r, is the command we want the output, y, of the plant to track (match) in face of the 

disturbance, d. The feedback controller, (7, acts on the error signal, e, to produce 

the control input, u, to the plant, P , to produce the desired response, i.e. y =  r. 

Clearly, signals for which the “gain” of the controller, C, is large will tend to have 

their effects eliminated from the error signal, e. This is precisely the idea behind 

repetitive control, i.e. we want to design controllers that have high gain for periodic 

signals with a given period of T  seconds. The basic concept of repetitive control is 

illustrated in Figure 2. Assume that the error input, er, is periodic with period T . 

Then, the repetitive controller output, ur , is a constantly growing scaled version of 

the error input, er . For purposes of illustration, assume that the periodic error signal,
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5

Xcy e j u a+t
- v  >

*  y

Figure 1: Basic feedback control problem.

er(f), is zero for t < 0, and then periodic with period T, er (<) =  er(t +  T ), for t  > 0. 

Over the first period, 0 <  t  <  21, the controller output, ur(f), is zero. Over the second 

period we have ur(t) =  er(t — T ) = er(t), and then over the third period we have 

ur(t) = er(t — T ) + ur(t — T ) = 2er(t). Similarly, over the fourth period we have 

ur(t) — 3er (i), and so forth. This behavior can be thought of as being marginally 

unstable, where it is only marginally unstable because it only grows without bound in 

response to periodic error signals. Clearly, as t —► oo, the gain on the periodic signal 

goes to infinity. Thus, if this controller could be used in the feedback control system of 

Figure 1, the error response to all periodic signals, whether references or disturbances, 

would be driven to zero. Unfortunately, as a practical m atter, certain modifications 

must be made to the repetitive controller of Figure 2 in order for the feedback control 

system of Figure 1 to be stable, see Chapter II. Thus, while the repetitive controller 

in Figure 2 is ideal with respect to performance, it is pathological with respect to 

robust stability, even without taking plant uncertainty into account.



www.manaraa.com

6

®r(t) —i o — -I ur( t ) = x ( t - T )  |~ |— u r(t)

Figure 2: Basic repetitive control concept.

1.3 H ° °  optimal control

The primary advantage of H°° optimal control is that it provides a  framework for 

quantifying the trade-off between performance (reference tracking and/or disturbance 

rejection) and robust stability in the face of plant model uncertainties. This trade­

off is quantified in terms of the frequency response of the feedback control system 

from the external inputs, r  and d, to the output, y, and the error signal, e. The 

two key transfer functions are: the sensitivity function, S', which is the transfer 

function (frequency response) from the reference input, r , to the error signal, e, and 

the complementary sensitivity function, T  := 1 — 5, from the reference input, r , to 

the output, y. The complementary sensitivity function, T , quantifies robustness with 

respect to plant model uncertainties. Thus, we need |5(ju;)| small in the frequency 

range where we require good performance, and we need |T(ju>)| small in the frequency 

range where we have significant plant uncertainty. Clearly this constitutes a trade­

off, due to the relationship, 7* :=  1 — 5, between T  and S. Note that the transfer 

function from the disturbance input, d, to the error signal, e, is —S. Thus, since 

it is the magnitude that characterizes performance, S  quantifies good performance 

both with respect to reference tracking and disturbance rejection. Typically, we
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need good performance at “low” frequencies (the performance region), and we have 

significant plant uncertainty at “high” frequencies (the robustness region). There is 

always increasing uncertainty in the plant model as frequency increases. Furthermore, 

high frequency plant uncertainty always places an upper bound on the achievable 

performance.

In a  sense the combination of repetitive control and H°° optimal control theory is a 

perfect marriage. While ideal repetitive control achieves perfect performance with no 

robustness, H°° optimal control theory quantifies the trade-off between performance 

and robustness. In order to more fully understand the relationship between the two 

design techniques, we must take a closer look at what it means to  have repetitive 

performance. The performance of repetitive control systems can be quantified in terms 

of the magnitude of the sensitivity function at a particular fundamental frequency, 

Wo :=  T/2tt, and a  number of harmonic frequencies, kcoo, where k comes from a 

predetermined set of integers. Specifically, performance is measured by how small the 

sensitivity function is at these harmonics. We will refer to the finite frequency region, 

from w =  0 to the highest harmonic of interest, as the performance region. The plant 

model must be very accurate in this region. Similarly, we will refer to the semi-infinite 

frequency region from the point where the plant uncertainty becomes significant to 

u> =  oo as the robustness region. Clearly, the robustness and performance regions 

must be disjoint. From the small gain theorem, see e.g. [2, 49], if the system loop 

gain is less than one, then the system is stable. Note that the small gain theorem is 

satisfied whenever \T(ju})\ is “small” , i.e. |T(jw )| < <  1. High frequency robustness
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is typically achieved in this way. Indeed, all controllers corresponding to “good” 

designs, have a small gain region, where the controller gain is sufficiently small to 

ensure that the system loop gain is less than one for all possible plant variations. 

Between the performance region and the small gain region, there is a frequency band, 

where robust stability must be ensured by other means. The narrower this transition 

band becomes, the more difficult it becomes to robustly stabilize the system.

1.4 Sampled-data systems

The world we all live in exists in continuous-time, i.e. there is a  continuous flow 

from one event to the next, and there is no discrete quantization of moments in 

tim e at which events can occur. This is in stark contrast to what goes on inside 

a computer. In computers, things can only occur at discrete instants and tim e is 

measured in integer numbers of discrete steps. Thus, computer computations exist 

in a very different world, where everything occurs in discrete-time. Systems whose 

operations are carried out in discrete-time are called discrete-time systems. Obvi­

ously, the dynamic behavior of discrete-time systems is fundamentally different from 

the dynamic behavior of continuous-time systems. Every physical system that we 

may want to control exist in continuous-time, even discrete event systems, such as 

vending machines. Thus, whenever we attem pt to  use computer control we are inter­

facing two very different worlds. There are two interfaces that must be considered: 

the interface from the continuous-time world to the discrete-time world, and the in­

terface from the discrete-time world to the continuous-time world. The interface 

from the continuous-time world to the discrete-time world is done by sampling the
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continuous-time signals, to obtain discrete-time sequences. Just as the clock rate of 

the microprocessor defines the relationship of the discrete-time world of the computer 

to the continuous-time world in which the computer exists, the sampling rate, / „  used 

to approximate a continuous-time signal by a discrete-time sequence, defines the re­

lationship between the continuous-time signal and its discrete-time approximation. 

Specifically, the interface from the continuous-time world to the discrete-time world 

is done by sampling the continuous-time signal at discrete (or as nearly discrete as 

possible) time instants. Typically, the sampling is done at equally spaced time in­

stants one sample period, r ,  apart. The interface from the discrete-time world to the 

continuous-time world is done via a, typically constant, hold function. The constant 

(zero order) hold function simply remains constant at the value of the preceding ele­

ment of the discrete-time sequence for one sample period, r  :=  1 / / „  where f a is the 

sampling rate (frequency). Any system composed of a continuous-time part and a 

discrete-time part, is a sampled-data system. The importance of sampled-data sys­

tems in today’s world of inexpensive, high speed computers cannot be over stated. In 

many cases, by far the most economical and reliable means of implementing control 

laws is by means of a computer, resulting in a sampled-data system. Historically, such 

systems have been designed considering the above interfaces to be ideal and using a 

high enough sampling rate, / , ,  that the approximation is adequate, see Chapter II. In 

this dissertation we explore the recent trend toward directly considering the design of 

controllers for sampled-data systems, i.e. design of discrete-time controllers directly 

for continuous-time systems, without making any approximations. Specifically, we
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apply sampled-data theory to H°° optimal repetitive control design.

1.5 Organization of the Dissertation

In Chapter II we give some mathematical rigor to the terms: “repetitive control”, 

“i f 00 optimal control theory”, and “sampled-data systems”. We also define, in general 

terms, the problems addressed by this dissertation.

In Chapter III we pose a  robust performance repetitive control problem in an H°° 

optimal formulation. This formulation is shown to lead to a “generalized” repetitive 

controller structure, which has implications for “classical” repetitive control design. 

We derive an extension to existing infinite dimensional H°° optimal control theory, 

which solves this formulation of the repetitive control problem. Finally, we present 

a numerical example, for an electro-hydraulic material tester, that illustrates the 

validity of the theoretical development.

In Chapter IV we consider nominal performance with robust stability H°° optimal 

repetitive control formulations. The resulting two-block H°° optimal control problem 

is solved using a specialized version of a considerably more general result on H°° 

optimal control of single input single output (SISO) systems. The solution of the two- 

block H 00 problem is shown to have two interpretations: one as a  direct design of H°° 

optimal repetitive controllers and another as a sensitivity improvement formulation. 

The sensitivity improvement formulation leads to a novel repetitive control structure, 

which can be viewed as a  cascade repetitive structure. Numerical examples are done 

to illustrate the effectiveness of the two-block formulation for practical repetitive 

control design.
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In Chapter V we propose a definition for “sampled-data repetitive control” and 

formulate a problem satisfying our definition. We derive an extension, to the existing 

results on sample-data systems, to a more general class of problems which includes our 

formulation of the sampled-data repetitive control problem. We give the solution to 

the sampled-data repetitive control problem in terms of the discrete-time equivalent 

system.

In Chapter VI we summarize the contributions of the dissertation and discuss 

future research directions suggested by the results of this dissertation.

In Appendix A we list the rather extensive mathematical notation required to 

rigorously define the research.

In Appendix B we give a  detailed (and highly mathematical) derivation and discus­

sion of the main result, Theorem 3.2.1, for the infinite dimensional H°° optimization 

problem arising from the robust performance formulation of Chapter III.

In Appendix C we discuss the issues and difficulties in obtaining exact minimal 

state space realizations of transfer function matrices (transfer functions for multi­

input multi-output (MIMO) systems). We give a detailed outline of a  proposed 

procedure for obtaining exact minimal realizations. We also present the details of the 

exact minimal realization required to complete the numerical example in Chapter III.

In Appendix D we give a detailed outline of the proof of our extension of the 

discrete-time equivalent system result of Bamieh and Pearson [5] for H°° optimal 

sampled-data control. This extension is required to solve the sampled-data repetitive 

control formulation of Chapter V.
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CHAPTER II

Mathematical Definitions and Problem Statement

In this chapter we give precise mathematical definitions for the three main topics of 

this dissertation: repetitive control, H°° optimal control theory, and sampled-data 

systems. We also give a  brief history of these research topics as it relates to the 

problems addressed in this dissertation. Using the precise mathematical definitions, 

we define, in general terms, the design problems to be addressed.

2.1 Repetitive Control Theory

Repetitive control is used in numerous industrial applications: electro-hydraulic mate­

rials testing [56,80,79], computer disk drives [20], motor speed control [51], trajectory 

control [6 6 ], non-circular machining [99, 98], friction compensation [100], and robotic 

manipulators [76]. The advantage of repetitive control is that it allows tracking (or 

rejection) of periodic signals with significant harmonic content using controllers with 

low order rational components. The repetitive controller structure of C\ in Figure 3 

is typical, where the time delay, T, is the period of the external input to be tracked 

of rejected. The repetitive part of the controller is the positive feedback loop with 

the delay term, e~tT, where we have added a pre-filter, q(s), to the ideal case shown 

in Figure 1. Stability analysis of this, and other, repetitive controller structures and

12
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guidelines for the selection of b(s) and q($) can be found in [39, 6 6 , 76, 79, 97]. Let 

the repetitive part of the controller Ci(s) be represented by

R(>) :=  <M*) =  1 +  * W * M . (2.1)

C,(s)

b(s) P(s)

C 2(8)

q(s) e-8T

Figure 3: Typical two degree of freedom repetitive controller.

R em ark  2.1.1 For q(s) =  1, we have R(ju)ok) — oo, for all integers k, where the 

fundamental frequency, u>o := 2ir/T.

Thus, if the closed loop system could be stabilized for q(s) = 1, we could achieve 

perfect tracking and rejection of arbitrary periodic signals. This can be viewed as an 

extension of the internal model principle, see [39].

R em ark  2 .1 .2  Forq(s) = 1, the closed loop system of Figure 3 cannot be stabilized 

for any real plant, P(s), i.e. fo r any plant with non-zero response at infinite frequency 

(strictly proper plant), see [39].

Thus, the repetitive controller parameter, q(s), quantifies a trade-off between per­

formance and (robust) stability. In terms of the usual measure of performance, the 

sensitivity function, we have that |S(ju>)| — 0  whenever |Ci(ju;)| =  oo which occurs 

whenever \R(ju>)\ = oo. Now, we can define repetitive performance in terms of the 

sensitivity function.
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D efin ition  2.1.1 (re p e titiv e  p erfo rm ance) We say that a controller provides repet­

itive performance, i f  \S(juok)\ ~  0, for all integers k (harmonics) o f interest.

Clearly, repetitive performance can be achieved without using repetitive control, at 

the cost of using very high order controllers. In particular, the repetitive controller, 

R (s ), could be replaced with a purely rational (finite dimensional) compensator with 

two poles (at ±juok)  for each harmonic of interest. This is exactly the trade-off in 

using repetitive controllers, a dramatic decrease in the order of the rational compo­

nents, at the cost of introducing the infinite dimensional component, e~tT . Similarly, 

it would be possible to choose the repetitive controller parameter, q(s), to eliminate 

repetitive action and choose b(s) to be a high order rational compensator providing 

repetitive action.

D efin ition  2 .1 .2  ( re p e titiv e  action ) We say that a repetitive controller provides 

repetitive action, i f  q(jujk) «  1, for all o f the harmonics o f interest.

When using an abstract design process, it is possible to come up with high order, 

or even infinite dimensional, q(s) satisfying Definition 2.1.2. Thus, we introduce the 

following definition for the classical notion of low order rational transfer functions 

q(s) that provide repetitive action.

D efin ition  2.1.3 (classical re p e titiv e  ac tion ) We say that a repetitive controller 

provides classical repetitive action, if q(s) is a low order rational transfer function 

that provides repetitive action, i.e. if q(s) is unity-low pass.

Any control system with two distinct controller blocks, such as Cj(s) and (^ (s) 

in Figure 3, is a two degree of freedom controller. Obviously, using a two degree of
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freedom controller provides more options with respect to  how to approach the design 

problem.

R e m a rk  2.1.3 Two degree o f freedom controllers, such as the controller shown in 

Figure 3, can be used to decouple the design for  nominal performance from the design 

fo r robust stability [102, 39].

In repetitive control a  slightly different use is made of the two degree of freedom con­

troller formulation. The controller 6 *2(3 ) is taken to be an initial (robustly) stabilizing 

controller, that is also designed to make it relatively easy for the component 6(s) of 

the controller 6 *1(5 ) to approximately invert the stabilized plant over the performance 

region. For more on approximate inversion of stabilized plants see Chapter IV.

R e m a rk  2.1.4 It is quite natural to use a two degree o f freedom controller structure 

fo r  repetitive control, because the performance is provided primarily via repetitive 

action, which also tends to destabilize the system.

Indeed, all repetitive controllers have a  two degree of freedom structure. While the 

structure shown in Figure 3 is fairly typical, there are many other structures. The 

only thing that all repetitive control systems have in common is a two degree of 

freedom structure and the inclusion of a  repetitive block (2 .1 ).

R e m a rk  2.1.5 Each o f the formulations, o f the continuous-time repetitive control 

problem addressed in this dissertation, leads to a novel repetitive control structure, 

with possible implications for classical repetitive control design.
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The only other class of repetitive controllers is discrete-time repetitive controllers. 

The main difference of discrete-time repetitive controllers is that the delay term  is no 

longer infinite dimensional in discrete-time. Since all real systems exist in continuous­

time, it only makes sense to talk about discrete-time repetitive controllers in the con­

text of sampled-data systems. Thus, a  detailed discussion of discrete-time repetitive 

control is given in Section 2.3, where we discuss sampled-data systems.

2.2 H ° °  Optimal Control Theory

H°° optima] control theory is a  norm based optimization method for obtaining control 

designs. While no norm based optimization method allows the incorporation of all 

design requirements, the /f°°-norm based method allows most design requirements 

and the key trade-off of performance (in terms of tracking or rejection of external 

signals) versus robust stability. The reason that H°° optimization is so useful is that 

it allows the use of all the frequency based design techniques from classical control 

theory, see e.g. [35, 53, 64]. Specifically, see [33], the if°°-norm (or simply the 

infinity-norm) of a transfer function, F , is defined by

Halloo :=  sup{|F(s)| : R e(s) >  0} =  ess sup{|F(ju;)|}, (2.2)
u/€R

where the second equality holds by the maximum modulus theorem. Thus the infinity 

norm of a transfer function is just the peak Bode magnitude, or maximum gain of 

the system. The connection to the Bode magnitude is precisely what makes the H°° 

optimal control methodology so useful, by allowing the application of the great wealth 

of knowledge about control design using frequency shaping, see [35, 53, 64, 22].
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The frequency shaping is done through the use of weighting functions, which are 

multiplied by certain transfer functions characterizing system properties, prior to 

evaluating the norm (or undertaking the norm-based optimization). The two most 

commonly used system transfer functions are the sensitivity function, S(s), and the 

complementary sensitivity function, T(s), introduced in Chapter I. The sensitivity 

function, 5’(s), is weighted by the performance weight, VFj(s), and the complemen­

tary sensitivity function, jT ( s ) ,  is weighted by the robustness weight, W ^s). The H°° 

optimal control problem is to minimize the infinity-norm of a weighted transfer func­

tion (or combination of transfer functions) over all stabilizing controllers. A typical 

formulation, and the one used in Chapter IV, is the two-block (nominal performance 

with robust stability) formulation given by the minimization, over all stabilizing con­

trollers, of the performance measure

k 1/2II
7 == w 2t

(|W i S |2 +  |W2T |2) . (2.3)

Clearly, wherever a given weighting function is large, the optimization process will 

tend to make the corresponding transfer function small. Obviously, we must make 

the magnitude of the robustness weight, |W2 {jw)\y large where the plant uncertainty 

is high, i.e. in the robustness region. Furthermore, we typically make \W2 (jui)\ 

small elsewhere so as not to interfere unnecessarily with obtaining other objectives. 

Similarly, the magnitude of the performance weight, \Wi(ju>)\, is typically chosen to 

be large in the performance region and small elsewhere. More precise shaping of the 

weights, Wi and W2, depends on problem specific information.
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Prom the definition, (2.3), of the two-block problem it is not at all clear how to 

find the optimal solution, i.e. it is not clear how to search over all stabilizing con­

trollers. The solution to this difficulty is the Youla parameterization of all stabilizing 

controllers, see e.g. [33], in terms of a free parameter, Q, in the Hardy space H°°.

D efin itio n  2.2.1 The Hardy space, see e.g. [41, 75, 91], H°° is defined to be the set 

of all complex valued functions, H (s), o f the complex variable, s =  o + ju>, a ,u  € IR, 

that are bounded and analytic in the open right half plane, i.e. fo r a  > 0.

The Youla parameterization is given in terms of any factorization, P  =  N /D  with 

N ,D  € H°°, of the plant and any solution of the associated Bezout identity

N X  + D Y  =  1, where X , Y  e  H°°. (2.4)

Now, we can give the Youla parameterization of all stabilizing controllers for the 

generic one degree of freedom feedback control system of Figure 4:

c  =  where «  €  H °°- <2'5)

R e m a rk  2.2.1 All one degree o f freedom controllers, regardless o f configuration, are 

stabilized by all controllers parameterized by (2.5).

A simplified parameterization is possible when the plant is stable (or has been stabi­

lized). Specifically, we can let N  — P, D  =  1, X  — 0, and Y  =  1, which gives

C =  j S p n '  Where Q 6  (2-6)

This simplified parameterization comes into play quite often in repetitive control, due 

to the initial stabilization step, see Chapter IV.
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Figure 4: Generic one degree of freedom controller.

Using the Youla parameterization (2.5) we can restate the two-block formulation 

in terms of the free parameter, Q 6 H°°. We restate the two-block problem for the 

generic configuration, see Figure 4. The optimal performance is given by

7o :=  inf 
' QeH*>

W iD Y
W2N X

W \D N
- W 2D N Q (2.7)

00

This form is suitable for optimization and has the structure of a  model matching prob­

lem, see e.g. [33, 22]. Note that, since the infinity-norm is a  supremum (maximum) 

operation, the H°° optimal control problem can be viewed as a m in/m ax optimiza­

tion problem. While this m in/m ax property is of interest to mathematicians and has 

led to some related control formulations, it is not significant to the specific problems 

addressed in this dissertation.

An interesting, but not especially desirable, property of the H°° optimal formu­

lation is that the optimal solution results in perfectly “flat” performance, i.e. the 

infinity norm is attained at every frequency. The drawback of this property is that it 

means that the optimization process “takes everything we say literally” , i.e. every­

thing must be posed in terms of equality constraints even though the actual design 

requirements are inequality constraints. Further complicating the situation is the fact
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that, the optimization problem cannot be solved for arbitrary nonlinear weights, e.g. 

weights that are identically zero over certain frequency ranges. However, the actual 

design requirements are exactly of this form, i.e. we have no performance require­

ment in the robustness region and typically no robustness requirement in some (if 

not most) of the performance region. Through intelligent selection and adjustment 

of the weighting functions, it is usually possible to get around these difficulties, at 

least for relatively simple problems. More general frameworks are needed for com­

plex problems, see e.g. [59]. Another framework for intelligent weight selection for 

H°° optimal control comes from /z-syntehesis [23, 72], in the “D-scales” and “D-K 

Iteration” techniques. These techniques, in their present form, are only applicable to 

finite dimensional problems. This dissertation is concerned with infinite dimensional 

(delay system) problems, and we must therefore depend upon intelligent selection and 

adjustment of our weighting functions. When we find that a particular portion of one 

or our weighting functions is being “taken more literally” than we would like, i.e. is 

determining the optimal performance level, when that point is not that important, we 

can adjust the shape of the weighting function by using a  more complicated (higher 

order) weight.

R e m a rk  2.2.2 (co n tro lle r o rder) For most optimization methods, including H  

the order o f the “optimal” controller is proportional (typically greater than or equal) 

to the sum of the order o f the plant and the total order o f all weighting functions, for  

finite dimensional problems.



www.manaraa.com

21

For infinite dimensional problems, the order and complexity of the optimal controller 

are generally even greater, see [95] for the S IS O  (single input single output) case 

and Chapter III for the S1M O  (single input multi-output, or vector) case. (The 

M I  M O  (multiple input multiple output) case has been solved only for a  restrictive 

class of plants and weighting functions, see [70].) Thus, we have to  be careful about 

increasing the order of our weighting functions, since it will lead to higher order 

“optimal” controllers. The combined order of the plant and the lowest order feasible 

weights often results in controllers that are too high order. For this reason, reduced 

order approximation (model order reduction) is often employed to obtain a  more 

practical (better) controller from the “optimal” solution, see Chapter IV. When 

optimization techniques yield controllers that are too high order, or are otherwise 

impractical, the “optimal” solution can still be quite useful if it provides insight into 

the characteristics of “good” solutions, see Chapter III. To date there has been little 

progress with respect to incorporating a  penalty on controller order into the “optimal” 

design problem. A suitable framework for digital implementations has been posed in 

[68] which depends on the ability to find the optimal controller of a  given order. The 

problem of finding the optimal controller of a given order remains an open research 

topic.

2.3 Sampled-data Systems and Control Theory

Today most controllers are implemented on digital computers. Historically, this has 

been done either by means of a discrete-time approximation of a controller designed 

in continuous-time or by designing a discrete-time controller using a discrete-time
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approximation of the plant, see e.g. [65]. Neither of these methods address inter­

sample behavior. Stability analysis has been addressed in [34, 17], and robustness 

is addressed in [82]. Furthermore, these approximation methods require very high 

(five to ten times the “bandwidth”) sampling rates in order to achieve reasonable 

approximations. Finally, these approximation methods necessarily provide subopti- 

mal performance. These problems have given rise to an exciting new area of research 

called Sampled-Data Systems.

In sampled-data system design, the fact that the plant exists in continuous-time 

while the controller is implemented in discrete time is directly incorporated into the 

design process. There are three main approaches to this problem: jump system 

methods [90], game theoretic methods (see e.g. [6, 7, 93]), and methods using a  

lifting technique (see e.g. [5, 104, 4, 16, 18, 15, 14, 105, 19]). (The lifting technique 

is described in detail in Chapter V.) The game theoretic results are a special case 

of the jum p system results [90]. The problem with the jump system results (and 

therefore the game theory results) is that they give solutions that are not practically 

implementable (as detailed below). The lifting based methods, on the other hand, 

provide a completely general framework for controller designs that can be readily 

implemented with existing technology. The lifting technique generates discrete time 

representations of continuous-time systems which preserve algebraic operations on 

systems, as well as signal and system norms, see e.g. [5, 104, 4]. The main difficulty 

is that the states of the lifted systems are function-valued rather than real-valued. 

For LTI systems, it has been shown that the resulting state space realization has
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dimension less than or equal to the original system, see [5]. Using this fact, Bamieh 

and Pearson [5] show how to construct an “equivalent” finite dimensional system 

with a real-valued state space. (A very closely related, but quite different, finite 

dimensional discrete-time equivalent system was derived by Kabamba and Hara [46].) 

The equivalence is in the sense that internal stability and the infinity norm of the 

system (H°° control problem) are preserved.

2.3.1 Approaches to the sampled-data problem

In its most general form (see Figure 5) the sampled-data problem includes a continuous­

time generalized plant model, G, (which includes any weighting functions), a continuous­

time pre-filter, F, (which is often included in the plant model), a sampler, S , (which 

is usually assumed to be ideal), a discrete time compensator, and a hold function, H , 

that constructs a continuous control signal from the discrete output of the compen­

sator. The weighting functions and design criteria should be posed in continuous time, 

since this is the environment in which the real plant exists. The pre-filter is typically 

included in the plant model because it is generally part of the sensor that generates 

the sampled data and is thus fixed at the control design stage. Furthermore, elab­

orate pre-filters are impractical to the extent that analog control is impractical. In 

almost all cases the sampling is assumed to be ideal. Real samplers are not ideal, but 

if their tim e constants are “fast” compared to the sensed signals, the approximation 

is good. The integral nature of real samplers is addressed in [67]. The hold function 

is typically taken to be fixed. Usually this fixed hold is taken to be the so called 

zero-order hold, which generates piecewise constant outputs. Arbitrary tim e varying
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hold functions are considered in [90, 89, 6, 7], and arbitrary fixed hold functions are 

addressed in [46]. Most D/A (digital to analog) converters, that are commercially 

available, are essentially zero-order holds. Any physically realizable hold function 

must be essentially fixed, i.e. not time-varying. The only exception to  this would 

be something of the nature of a  digitally programmable filter, in which case the hold 

still must be from a fixed set of time invariant holds. Finally, the sample and hold 

functions are almost always assumed to be synchronized. While no physical system 

has perfectly synchronized sample and hold functions, many systems do operate with 

very near synchronization. Asynchronous sampled-data systems are considered in 

[103].

Figure 5: General form of the sampled-data problem.

From the above it appears that the most practical approach is to include the pre­

filter in the plant model and assume ideal sampling and fixed zero-order hold. This 

is the approach of [5, 17, 16, 15, 4, 82, 25, 57, 14, 50, 19, 92, 81]. We will also follow 

this approach. The other approaches, while not as practically applicable, may yield 

useful insights into the nature of the problem. Some other approaches are:

•  Arbitrary time varying hold function design is considered in [6]. In this paper 

Basar shows that for the state feedback case this leads to a constant
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(memoryless) discrete controller and hold function that is a nonlinear function 

of time. In [90] it is shown that for LTI plants with output feedback the hold 

is of the form CeAt and the discrete controller has an observer type structure.

•  Simultaneous design of the pre-filter and the discrete compensator is addressed 

by Sun et al. in [89] for LTI plants with output feedback. Toivonen uses this 

approach with respect to time-varying plants in [94]. Both of these approaches 

result in nth order (order of the generalized plant) pre-filters.

§ Control updating between data samples is considered in [18]. They show that 

such dual-rate time-varying control can be superior to LTI control (more on this 

below).

The last method is the only means by which arbitrary time varying hold functions 

could be approximated. This is the main drawback of such hold functions. That 

is, they must be approximated, which opens up a whole new can of worms. The 

advantage of such hold functions, if they could be realized, is that they make arbitrary 

zero placement possible [1]. However, this can also be accomplished through the use of 

periodic digital controllers in conjunction with zero order holds [34]. Such controllers 

can even be used to stabilize decentralized fixed modes [71], if the fixed modes are 

unstructured. The problem with “optimal” pre-filters is that they will be very high 

order and therefore candidates for digital implementation. Furthermore, they would, 

in many cases, have to be internal to the sensor. Whether dual rate makes sense, 

depends on the particular implementation. The only systems for which it makes



www.manaraa.com

sense, are those systems for which the rate at which the data can be sampled is the 

limiting factor. Let f y be the sample rate, with respect to the output data. Let f u be 

the control input update rate, which corresponds to the rate at which these outputs 

must be computed. Unless there is a  fixed delay in the relationship between y  and 

u ,  f y is strictly a function of the sensor technology, whereas /„ is a function of the 

available computational capacity and the complexity of the relationship between y 

and u. To date the case of f y > / u has not been considered. In [18] it is shown that, 

when / u >  f y is achievable, the performance is better than for f u = f y ,  for a  given 

f y . Finally, none of the above consider the quantization (finite word length) problem 

and we will not either. For a discussion of quantization issues see [27, 58].

2.3.2 Sampled-data repetitive control

Since the only advantage to repetitive control is reduced order controller order, it 

seems natural that a  sampled-data repetitive controller should have a digital repetitive 

structure. The general structure of digital repetitive controllers is

=  w here (2-8)

q(z) and d(z) are rational functions and the integer L  is at least twice the ratio of 

the sampling frequency (rate), f„ =  1 /r ,  to the fundamental frequency, f o  := u Q/ 27t , 

of the the periodic input. If q(z) =  1, then C (z) would cause discrete-time plants to 

perfectly track periodic discrete-time signals with L harmonics and the same sample 

rate, assuming d(z) renders the system stable. Such a  d(z) may or may not exist, for 

any particular problem. Note that the sampling rate, f a, must be chosen to be an
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integer multiple of the fundamental reference frequency, /o.

R e m a rk  2.3.1 (d ig ita l re p e titiv e  con tro l) Digital repetitive controllers have a purely 

rational (finite dimensional) structure.

This is a  significant advantage over continuous-time repetitive controllers. The only 

drawback of continuous-time repetitive controllers is the infinite dimensional structure 

requiring delays for implementation. The inclusion of the delays significantly increases 

the complexity of the design process as well as the difficulty of implementation. Thus, 

digital repetitive controllers have all the advantages, and none of the disadvantages, of 

repetitive control. The only difficulty lies in how to obtain digital repetitive controllers 

that satisfy a continuous-time “repetitive” tracking requirement. This is where the 

sampled-data formulation comes into play.
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CHAPTER III

Robust Performance Formulation

In this chapter we pose a robust performance problem for the two degree of freedom 

repetitive controller of Figure 6, as an H°° optimal control problem. We then develop 

new infinite dimensional H°° theory to solve the resulting problem, and present a 

numerical example.

3.1 Problem Formulation

The sensitivity function of Figure 6, is given by

£ ( * ) .  R(s) — Y (s)  1 +  PC, *
S - W )  m ~ ~ T T p c , '  where

(3.1)

b(s) P(S)q(s) e-sT

Figure 6: Initial two degree of freedom repetitive controller.

28
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The pair (C \,C 2) corresponds to the standard form of the two degree of freedom 

control problem [102]. We consider the additive uncertainty description, defined by

P*(s) =  P (s) + W2(s)A (s), (3.2)

where P  is the nominal plant, P& represents the unknown actual plant description, 

A  6  H 00 is the normalized (such that, |A(ju;)| <  1) uncertainty and W 2 is the 

additive uncertainty weight. Robust performance implicitly requires robust stability 

as a prerequisite. The two degree of freedom robust stabilization problem is to find
A

a  controller pair (Ci, C2), such that the closed loop system is stable for all possible 

plants P&. It can be shown, see e.g. [13, 22], that a  sufficient condition for robust 

stability is

1 1 ^ ( 1 +  PC2)-1|U < 1 ,  (3.3)

A
where C2 stabilizes the nominal plant, P. In addition to robust stability we want 

good performance for all P& (robust performance), i.e. we also want 

|*S,A(jw)| <  |Wi(jL>)|-1 , for all w, where 

„ l +  (P + WaA)C>
54 -  1 +  (.P +W2A)C2' (3-4)

It can be shown that these definitions lead to the following sufficient condition for 

robust performance:

1W, | ( | 1 +  ^  +  _ W iC 2 |\  I w 2 c 2̂
1 'VIl +  PC', l + P C t\J  \ l  + PC 2  v '
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A closely related control problem in terms of the infinity-norm, see [22], is the H°°

optimal control problem given by

( i±eqA
\ i +p c 3 J  

2 \1 + P C 2 J
inf

CUC3 stabilizing P
(3.6)

D efin itio n  3.1.1 ( ro b u s t p e rfo rm an ce  p ro b le m ) The continuous-time robust per­

formance problem, considered in this chapter, is defined by (S. 6 ).

Indeed, it is simply an abstract formulation of a  generic robust performance prob­

lem. We will impose a repetitive structure, by constraining C\ to have the repetitive 

structure shown in Figure 6.

R e m a rk  3.1.1 A characterization o f all stabilizing two degree o f freedom controllers, 

where C\ has the repetitive structure shown in Figure 6 , and guidelines on how to 

choose q(s) fo r  nominal closed loop stability and performance are presented in [39]. 

Robustness with respect to performance is not addressed.

In order to solve the robust performance problem, and impose a repetitive struc­

ture on Ci, we must bring in a parameterization of all stabilizing controllers. The 

set of all two degree of freedom controller pairs (C i,C 2) stabilizing a given nominal 

plant, P, can be parameterized using a factorization approach [102].

R e m a rk  3.1.2 While there is only one generic parameterization for all one degree 

of freedom control systems, see Remark 2.2.1, the parameterization o f all stabilizing 

two degree o f freedom controllers is configuration specific.

This formulation does not yet have any concrete relationship to repetitive control.
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We consider the closed loop system shown in Figure 6. Let X , Y  €  IRH00 (the set of 

rational functions in H°°) be the solutions of the Bezout identity, N X  +  D Y  = 1, 

for the nominal plant P  = N /D , where N ,D  € IRH00. Recalling that C2 :=  C\ +  

C2, the set of all two degree of freedom controllers stabilizing P  is given by the 

parameterization

X  + DQ 2
C\ = and C2  — (3.7)

Y - N Q 2 Y - N Q 2’

where Q\ and Q 2 are free parameters in H°°. In terms of the parameterization of all 

stabilizing controller pairs, (Cx, C2), the problem (3.6) can be expressed as

'iovt =  inf
r Wi ■ ' WXN 0

WxW2X D — w xw 2d -W xW iD 2

w 2x d 0 - W 2 D2

h  
Q2.

(3.8)

R e m a rk  3 .1 .3  I f  we are only interested in robust stabilization, we can set Wi =  0, 

which reduces (3.8) to a one block H°° problem involving Q2  only, which is essentially 

the case when we are designing an initial stabilizing controller.

Similarly, if we are only interested in nominal performance, we can set W 2 =  0, which 

reduces (3.8) to a one block H°° control problem involving Q\ only, however it is 

hard to foresee any situation where we wouldn’t care about robust stability. This 

illustrates one advantage of two degree of freedom control: the nominal performance 

and the robust stabilization problems can be decoupled. However, the advantage for 

our purposes is tha t two degree of freedom controllers are completely general and 

give the maximum possible design flexibility. For robust performance we need to 

solve (3.8), which couples Q\ and Q2. The problem (3.8) is a  M IM O  two-block H°°
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control problem, which has a well known solution, when Wi, W2 and P  are finite 

dimensional.

In order to force a  repetitive structure on the solution to (3.8), we constrain C\ 

to have the repetitive structure of Figure 6, i.e. we set 

b(s)q(s)e~'T  C?i(s)_____
1 +  1 -  q{s)e-'T Y (s)  -  N ( s ) Q 2(s)  

or (Q 1 - Y  + N Q 2) = qe~lT(Qi - Y  + N Q 2 + b{Y -  N Q 2)).

(3.9)

(3.10)

If q(s) is proper, then the lefthand side of (3.10) must have an equivalent time delay 

of a t least T  seconds. Since Y ,N  € IRH00 do not contain delays, we let

Q i(s) -  F (s) =  e tTQi(s) and 

& W  =  e - Tg 3(»),

where Q i,Q 2  G H°°.

(3.11)

(3.12)

R e m a rk  3 .1 .4  Given Q\ and Q2, there are infinitely many ways to choose corre­

sponding b and q satisfying (3.9). However, i f  we constrain b and q to be rational, 

then there exists a unique solution, see Section 3.3. Furthermore, the resulting op­

timal C2 has the alternative repetitive structure shown in Figure 7, and the overall 

repetitive control design has the generalized repetitive structure o f Figure 8 .

Under the decomposition defined by (3.11) and (3.12), the problem (3.8) becomes 

7opt =  inf W t W2(X  -  Y )D  -  W iW iD  - W ^ D *  | X  | .(3.13)
Qi .&€//“

W ^ l - N Y )  ' ' Wt N 0
W t W2(X  -  Y )D — W !W 2D - W M D 2

[ W2X D 0 - w 2d 2 LV2 j
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d{8)

a{8) q(s) e"sT

Figure 7: Alternate repetitive controller structure.

a(s)

m

q(s) e_sT

Figure 8: Resulting generalized repetitive controller structure.

D efin itio n  3 .1 .2  ( ro b u s t re p e titiv e  p e rfo rm an ce  p ro b le m ) The robust repeti­

tive performance problem is defined by (3. IS) and the solution has the structure shown 

in Figure 8 .

Explicit formulas for computing the generalized repetitive controller parameters (a, 

b, d, and q), shown in Figure 8, are given in Section 3.3. The H°° optimal control 

problem given by (3.13) is a  vector (SIMO) H°° problem with a  scalar delay. The 

solution of this problem requires an extension of the previous results on infinite di­

mensional H 0 0  optimal control, see [28, 31, 69]. In the next section we provide the 

required extension of infinite dimensional H°° optimal control theory for a class of 

problems including those of the form (3.13).
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3.2 Solution of the Infinite Dimensional H ° °  Problem

The infinite dimensional H°° optimal control problem (3.13) is of the form

7opt = ^  inf ||F -  mGQWcc, where Q :=  [ Qx Q2 ]r ; (3.14)
QifoeH”

F  and G are arbitrary 3 x 1  and 3 x 2  matrices, respectively, with rational entries 

in H °°; and m  € H°° is an arbitrary inner function. Clearly, (3.13) is a special 

case of (3.14), where m(s)  =  e~aT. The solution procedure given here is a exten­

sion/modification of previously obtained results on the H°° optimal control of SJSO  

distributed plants, see [31, 69].

R e m a rk  3.2.1 A similar vector H°° optimal control problem involving time delays 

has been studied in [28] for an automobile engine idle speed control. They show that 

the problem can be posed as a singular~value/singular-vector problem for a finite rank 

infinite dimensional operator, but they do not give explicit formulas for the solution 

o f this problem or present a numerical example.

We now employ the common techniques of inner/outer factorization and outer factor 

absorption to obtain a “clean” formulation of the vector H°° problem (3.14), see e.g. 

[22, 33, 102]. Let G =  M qPg be an inner/outer factorization of G, where M g is a 

3 x 2  inner m atrix and Pg is a 2 x 2 outer matrix. Define 0  :=  [ Mq M q ], where 

M q is a  3 x 1 inner matrix, such that 0  is a 3 x 3 inner matrix.

R e m a rk  3.2.2 The outer factor can be absorbed, without loss o f generality, by defin­

ing Q :=  PgQ, under certain genericity assumptions, see [32].
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A  ̂ Ar
R e m a rk  3 .2 .3  Thus, to obtain the solution of (3.14) we simply compute Q = Pa Q> 

where i f  Pjf1 does not exist, i.e. is improper, the “optimal” performance cannot be 

achieved, but we can come as close as we like by appropriate approximations to the 

inverse, see e.g. [2 2 ].

The resulting “clean” (standard) form of the vector H°° problem is given by

7 opt =  _ inf
Q i.9 a€J/°°

'  R i ' ' Q x '
R* — m Qi
Rz . 0 .

(3.15)

where R  := [ R\ R 2 Rz ]T 0*F. Note that, without loss of generality, we can 

assume that R 3  € 1RH00.

In order to solve the standard form given by (3.15), we must define a two-block 

operator, A , in terms of the projection operator, P h (M)> and the multiplication op­

erator, M iv, which are defined in Appendix A.

D efin itio n  3.2.1 The two-block operator, A  : H 2 —► H ( M)  0  H 2  

(where H ( M)  and H 2 are defined in Appendix A), is defined by

A := H{M)

M y,

M y,
M y , (3.16)

where m i and m 2 are the minimal Blaschke products, such that V\ :=  m \R i and

m i 0
0 m2

V2 :=  m 2/22 are in H°°; M  := m ; and V3 :=  Rz-

Now, we can state a lemma relating the optimal performance, 7 ^ ,  of problem (3.15) 

to the maximum singular-value of A.
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L em m a 3.2.1 The optimal performance, -y0pt, o f problem (3.15) is given by 7 opt — 

where the operator norm o f A  is defined to be the square root o f the largest 

element o f the spectrum o f A , cr(A).

Lemma 3.2.1 follows directly from the commutant lifting theorem, see e.g. [29,30, 77]. 

The spectrum, <r(A), consists of two parts: the discrete spectrum <?&(A) consisting of 

the singular-values with finite multiplicity (the usual singular-values as in the finite 

dimensional case) and the essential spectrum o’e(A). The essential norm of A, ||A||e, 

is defined to be the square root of the largest element of <7e(A).

R e m a rk  3.2.4 Under the genericity assumption that the norm of A is larger than 

the essential spectrum, see Assumption 1 in Appendix B, 7opt =  ||A|| can be uniquely 

determined by solving the singular-vector/singular-value problem for  A.

L e m m a  3 .2 .2  Let ( 7 0pu$°) be a singular-value/singular-vector pair fo r  the two block 

operator A., then the optimal interpolant Q°pt, solving (3.15), is given by

Aovt P +Rim*x° Aopt P +R 2 m*x0
Q 1 =  ~o  and Q 2 = ------- 0------ ,

where the projection operator, P + , is the “stable projection”, see Appendix A.

(3.17)

P ro o f: By the commutant lifting theorem, see e.g. [29, 30, 77], we have
Aopt

~ M  Q f  

V3

V2 x° =  A x°, (3.18)

and from the definition of A, we have
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Clearly, (3.18) will be satisfied iff

Vi
V2

x° — M Q°i
opt

) T
X °  =  P  H(M)

Vi
V2

x° = Vi
Vi

x° -  M P+M * Vi
Vi

xo.(3.20)

Canceling common terms and multiplying by Af* from the left, gives

Q ? n
Q T

x° =  P+M* Vi
Vi

x° =  P+ Ri
R*

m*x°. □ (3.21)

Thus the solution of (3.15) is equivalent to solving the singular-value/singular-vector 

problem for A.

R em a rk  3.2.5 Since m* has no stable poles, we can write Q°pt = q i/x° and Qopi =  

q2 /x° , where q\ and q2 are stable rational transfer functions.

T h eo rem  3.2.1 (so lu tion , o p e ra to r  s in g u la r-v a lu e /sin g u la r-v ec to r p rob lem )

Under certain genericity assumptions, see Assumptions 1 - 6  in Appendix B, there ex­

ist a finite dimensional matrix Ra, (B.52), such that the pair {a, x) is a singular- 

value/singular-vector pair for  A  iff the matrix R a is singular. Furthermore, the 

singular-vector, x, can be explicitly constructed from the interpolation constraints, 

defined by Ra$  =  0.

The proof, which is extremely long and very mathematical, appears in Appendix B. 

Appendix B also gives completely explicit equations for constructing Ra and the 

singular-vector, x.

R em a rk  3.2.6 The maximum singular-value, 7 „pt := amax, o f A can be found by 

varying the parameters over the finite interval ( ||A ||e, ||i2||oo)) and finding the largest 

value of a  for which Ra is singular.
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The essential norm can be readily determined by means of the following lemma from

(30).

L em m a 3.2.3 The essential norm, ||A ||e, o f A , is given by

||A |. = ma*{||V,|'.,||£||}, (S .S t)

^  r l T
where (A, B , C , D ) is a minimal realization fo r  F  :=

Thus the finite interval over which one must search for 7 opt is easily determined.

3.3 Calculation of the repetitive controller parameters

In this section we show how to calculate the parameters of the generalized repetitive 

controller structure shown in Figure 6 . From Remark 3.2.5, Qopt can be written as 

Qopt =  ^[<7i 92F 1 where q\ and q2 are stable rational functions. It can be shown (see 

Appendix B) that x° can be written as x° =  g + m h , where g and h are rational 

functions. From Remark 3.2.3 and the fact that all of the entries of P q 1 are rational 

functions, we can write Qopt — ^[<71 (ft]7, where q\ and q2 are rational functions. 

Next, we substitute these equations into (3.11) and (3.12), and get

Qopt ~ Y - \ — an( j Q °pt — m Q2 t where m(s) =  e~>T. (3.23)
g -j* m h g -(- mh

Finally, we substitute (3.23) into (3.7), and use a little algebra, to get

X +  bgm_ _  ^ _ Q i ^  -  ! +  . y . « d  (3-24)
1 — <7771 Y - N Q 2 1 — m(q2N  — h Y )/g Y

X  +  DQ 2  X / Y  + m (h X  +  q2 D ) / gY  
Y - N Q 2 1 -  m{q2N  -  h Y ) / g Y

(3.25)
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Thus, by matching coefficients, we have that the unique rational functions ?(s) and 

b(s) w e given by

q2 N - h Y  t q i + q 2N  fft
q= gY and h= q, N - h Y -  (3-26)

We set C2 equal to the transfer function of the repetitive controller shown in Figure 7,

and get

~ _  X  + DQ 2  __ X / Y  +  m (h X  +  g2 D ) j g Y  _  d +  (a -  d)qm  
2 Y  -  N Q 2 1 -  m(q2N  -  h Y ) / g Y  1 -  qm  '  ‘ ]

Thus the optimal C2 is a repetitive controller of this form, with

g -  n v i h w i  “ d d = v -  <3'28)

R e m a rk  3.3.1 The rational function d(s) plays the role o f the initially stabilizing 

controller in the traditional repetitive control design procedures.

Indeed, we can define X  :=  X  +  Dr and Y  :=  Y  — N r, where r  € H°° is a free 

parameter. This parameterization of all (initially) stabilizing controllers, d(s), can be 

used to obtain an initial design, d = X / Y ,  with desirable properties.

3.4 Numerical Example

In this section we consider a numerical example using a plant model for an electro- 

hydraulic material testing machine [56, 80, 79]. Specifically, we consider frequency 

normalized plants of the form

P{3) = (s — e)(s +  a)(s 2 +  2£s +  1) 5 (3'29)

where the pole at € is an approximation to a pole at the origin.
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R e m a rk  3.4.1 Frequency normalization is necessary for the problem to be numeri­

cally well conditioned, i.e. fo r a numerical solution to be possible using M ATLAB. 

This is a very common difficulty, and is in no way related to the repetitive control 

formulation.

In this example K  =  0.2103,e =  .001, a  = 0.8653, and £ =  0.4. The following 

N , D , X , and Y  satisfy the Bezout identity for /*($):

J V = (» + <0(» + a)(s3 + 2C» + l) ’ D = 7 + l '  (3'30)

*  _  0.0082, and Y  =  . (, 31)
(s +  a )(s2 +  2(s +  1)

The initially stabilized closed loop system is given by

rrS fc  “ A' K  (3-32)
This initial stabilization step is the first in the two step design process. The second 

step, which is the subject of this research, solves for the H 00 optimal a(s), 6(s), and g(s).

Let the fundamental period of the signed of interest be T  — 13.7333, which implies 

that Wo =  2i t f T  =  0.4575 rad/sec is the fundamental frequency (first harmonic). 

Thus the second harmonic is also within the bandwidth of the system.

R e m a rk  3.4.2 The signal of interest is taken to have only two significant harmonics, 

because o f numerical difficulties associated with large fundamental periods T .

The specific source of the numerical difficulties associated with large fundamental 

periods, is discussed later in this section. Let the performance weight, W\, have a 

spike at wj =  2w0. Specifically, the weights are given by

w , (* +  «)(*2 +  2C» +  D  (3.33)
1 8s3 +  14.2798s3 +  7.3218a+  11.3681 3 s +  2 1 1
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Figure 9: Bode magnitude plots of the weights, W \ and

The numerator of W \ is set equal to the denominator of Y ,  so that F  will not have 

repeated poles, which would lead to repeated poles for R  and violate the genericity 

assumptions of Theorem 3.2.1, see Assumption 2 in Appendix B. The Bode magnitude 

plots of the weights are shown in Figure 9.

R e m a rk  3 .4 .3  The idea behind choosing a rational weight with a single spike (notch), 

even when there are more harmonics o f interest, is that fo r  properly chosen low order 

rational weights, the resulting “optimal” controller will still provide repetitive action 

at several harmonics.

This approach is employed quite successfully in Chapter IV, which strongly implies 

that, given better computational facilities, it would work well for this formulation as 

well.
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Since D  is inner, F  and G defined by (3.13) and (3.14) have a common inner 

factor, and can be redefined as

’ N  O '
, where

(3.34)

' 1 -  N Y  ' ' N 0 '

II£

X  -  Y and G := W 1 —D
X 0 - D

W  :=
' W x 0  0

0  W iW 2 0 
0  0  W2

R i II 5 * 5 JV* 9n - X D * Pl2 - Y P ll

R t 921 P22 P21

and R 3 =  { F*F -  {R i'R i +  B t’R t)  }*,

where II•1£ 9n 912 and Pg =: P ll Pl2

921 922 P zi P22

W ith F  and G as defined above, it can be shown that

(3.35)

(3.36)

(3.37)

To solve for R  we must obtain the outer factor, Pa, of the M I  M O  transfer function 

(transfer function matrix) G. Inner/outer factorization of G  requires a minimal state 

space realization. Finding an exact minimal realization for transfer function matrices 

is a  nontrivial problem. Appendix C addresses this issue at some length and gives 

the details for this example. The resulting minimal realization of G  is tenth order.

R e m a rk  3 .4 .4  The frequency normalization mentioned above is necessary in order 

fo r  the realization to be numerically controllable and observable.

The inner/outer factorization of G, using the minimal state space realization, was 

done using the algorithm in [33]. The resulting common denominator, D R, for R\ and 

R 2 is seventeenth order and i ?3 is thirteenth order. The Bode plots of the seventeenth
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Figure 10: Full order Bode plots of Ri and R 2, prior to balanced reduction.

order R \ and R 2 are shown in Figure 10 and the Bode plot of the thirteenth order 

Ra is shown in Figure 11.

R e m a rk  3 .4 .5  The high order o f these transfer functions makes it numerically im­

possible to compute the solution to (3.15) using M ATLAB, since M ATLAB has only 

sixteen decimal digits o f precision and the resulting high order polynomial operations 

required to construct Ra, such as root finding and convolution, are numerically ill- 

conditioned.

Thus, in order to obtain a  numerical solution using MATLAB, the components of 

R  must be approximated by reduced order transfer functions. The singular-value 

decomposition (SV D ) method of [61] for balanced reduction, was used to obtain:

R  0 0fi°0f ** +  2 l6 9 1 3 s3  +  4 -680052  +  20322a +  0 *7 0 0 7  
Hi -  .0  06 +  2  9 0 g 3 5 3 +  0.97887s2 +  2.3436s +  .0023426 ’ (3.38)

s4 + 0.68439s3 +  1.0788s2 +  10.0898s -0 .4793 
R 2 -  0.00 7 7 S4 +  2.9083s3 +  0.97887s2 +  2.3436s +  .0023426 ’ “   ̂ ^
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Figure 11: Full order Bode plots of R3 and plot of \\R — R\\.

R3 = 0.13368
s3 +  1.0548s2 +  0.4114s +  .03597
s3 +  2.8808s2 +  1.0457s +  2.2995 ’

The total approximation error, ||iE -  R\\, is shown in Figure 1 1 .

(3.40)

R em ark  3.4.6 The error peak is at the peak o fW \, which is undesirable but unsur­

prising. However, even the peak error magnitude (O.Z) is quite small.

R em ark  3.4.7 Solving the singular-value/singular-vector problem using R  gives %Pt, 

where 7 ^  <  %pt +  ||R -  R\\.

From Remark 3.2.6 we only have to search over the finite interval (||A ||e, ||R||oo) to 

find 7 opt, where from Lemma 3.2.3 we know that ||A ||e =  m ax  {HR3 H00, | |^ | |}, where 

D comes from the state space representation of R. With a little calculation, we find 

that \\D\\ =  0.1474 and \\R$\\oo =  -5691, thus ||A ||e =  .5691. Thus, we only need to 

search over the interval (0.5691,18.5717), which gives7 opt =  1.296068976743. All of 

the digits shown are significant. The degree to which ||i2 — mQ\\ is constant for all
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frequencies is very sensitive to the exact value of %pt. The corresponding value of the 

delay, to the same precision, is T  =  13.733333333333. The resulting performance for 

the approximate system, ||fi — mQ\\, and the performance, ||72 — m Q ||, of the actual 

system are shown in Figure 12. Ideally, both of the above performance plots would 

be completely flat.

R e m a rk  3 .4 .8  The performance for the approximate system, ||/2 — mQ\\, is quite 

flat, with a maximum deviation from % pt =  1.296068976743 of less than one percent, 

which confirms the accuracy o f the new H°° theory developed in this chapter.

R e m a rk  3 .4 .9  The error, in terms o f deviation from %pt =  1.296068976743, in the 

plot o f\\R  — mQ\\ is exactly what one would expect, i.e. at both high and low frequen­

cies it is approximately equal to the frequency approximation error, see Figure 11, 

and the peak error occurs near the peak approximation error and is bounded by the 

approximation error.

W hat little error (deviation) there is in the \\R — mQ\\ plot, is likely due to numerical 

difficulties associated with polynomial operations and/or arising from the scaling of 

some of the entries of R„ by the e~yiT (see Appendix B for the definition of the 7 ;). 

Indeed, when the fundamental period, T , was increased even a little bit, the numerics 

broke down completely and a  solution could not be found, i.e. it resulted in an ill- 

conditioned R„, which is numerically singular for all sigma. For this example the 

real part of the 7 ; ranges from -2 .85 to +2.85, which leads to scale factors ranging 

from 10-1 7  to 1016. Thus, even for this relatively modest value of T , R a is poorly
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conditioned. This difficulty can only be resolved through increased computational 

precision (all calculations were done using MATLAB, which only has sixteen decimal 

digits of precision).

IJ04

I0-* JO*

1J3

I >45

1.13

10-* MH

Performance, ||iE — mQ|| “True” Performance, ||/2 — mQ\\

Figure 12: Performance of Q for both the approximation R  and the original R.
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Figure 13: Bode plots of the repetitive controller parameters a (s) and 6(s).

The Bode plots of the repetitive controller transfer functions a(s) and b(s) are 

shown in Figure 13, and q(s) is shown in Figure 14. While a(s) and b(s) are nineteenth 

order and q(s) is twentieth order, they could all clearly be well approximated by much
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Figure 14: Repetitive controller parameter q(s) and resulting performance S(s).

lower order compensators.

R e m a rk  3 .4.10 Ignoring localized behavior, a(s) can be well approximated by a first 

order transfer function while b(s) and q(s) can be well approximated by second order 

transfer functions.

In spite of this encouraging fact, the bottom line is that the performance of this de­

sign is awful, see Figure 14. It is believed that this is due to some combination of 

poor weight selection and numerical errors. However, until the numerical issues can 

be resolved adequately to allow ready computation for meaningful (multiple signifi­

cant harmonics) problems, the difficulties and potential of this formulation cannot be 

evaluated.

R e m a rk  3.4.11 The excellent results o f Chapter IV, for the two-block repetitive con­

trol formulation, are reason for considerable optimism about the potential for this 

repetitive control formulation, pending the resolution o f the numerical difficulties.
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At least with presently available computers, e.g. the Sun Sparc Station 5, sym­

bolic/multiprecision packages such as Maple and Mathematica are not the answer, 

because they simply run too slow on problems of this complexity.

R e m a rk  3.4.12 Clearly, q(s) does not provide classical repetitive action, since it is 

very large at low frequency. Indeed, the only time that q(s) «  1 is near the single 

spike in the performance weight, W \.

While this further illustrates the shortcomings of this particular design, the fact that 

?(«) «  1 is near the spike in W\ is quite encouraging with respect to the ultimate 

potential of the formulation.

R e m a rk  3.4.13 A very interesting feature o f a(s) is that its Bode magnitude is very 

small in the performance region, effectively opening the outer control loop, while it 

appears that this is part and parcel o f the poor design results, other choices, such as 

a low pass a(s), may lead to better classical repetitive controller designs.

In classical repetitive controller design, see e.g. Figure 6 , a(s)/b(s) is taken to be 

identically equal to one, whereas in this design the ratio is practically zero in the 

performance region. Finally, we should comment on the odd hitch that appears in the 

Bode plots of both b and q (and hence also in the Bode plot of S) near 0.015 rad/sec. 

This hitch occurs at one of the 7 ,, which are supposed to be canceled by construction, 

and is believed to be the result of numerical errors.
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3.5 Summary and Conclusions

In this chapter we posed an H°° optimal robust performance problem, see Defini­

tion 3.1.1. By constraining the controller C\ of Figure 6 , we obtain a H 00 optimal 

robust repetitive performance problem, see Definition 3.1.2. Under certain genericity 

assumptions (see Assumptions 1-6 in Appendix B), H°° control problems of the more 

general form (3.15) can be reduced to the calculation of Qopt from (3.17) using the 

singular-vector, a;0, corresponding to the largest singular-value, crmax =  7 opt, of the 

two block operator A, see Definition 3.2.1. The pair (cr, x) is a  singular- value/singular- 

vector pair for A  iff the matrix see (B.52), is singular. To find 7 ^  =  crmax we 

need only vary <7 over a  finite interval, see Remark 3.2.6. The corresponding singular- 

vector, x°, can be calculated from the optimal interpolation constraints, $°, defined 

by R*ma,$ °  = 0, see Appendix B. Finally, Qopt can be calculated from x° using 

(3.23).

The H°° optimal robust repetitive performance problem of Definition 3.1.2, yields 

the generalized repetitive controller structure of Figure 8. The unique rational con­

troller parameters of this generalized structure can be calculated directly from Qopt, 

see Section 3.3. The parameter d = X / Y  is fixed prior to solving the H°° optimal 

robust repetitive performance problem, since it is just the ratio of the two parameters 

in the solution of the Bezout identity used to parameterize all stabilizing controllers. 

The only requirement on d(s) is that it must stabilize the nominal plant. Thus, d(s) 

plays the role of the initially stabilizing controller from classical repetitive control de­

sign. So, the overall design procedure has two steps: first find an initially stabilizing
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controller d(s), which determines the X  and Y  used in the H°° optimization, and 

then solve for q(s), a(s) and b(s) by the H°° optimization method detailed above.

The numerical example illustrated several interesting effects. The construction 

of the m atrix, R9, was found to be numerically poorly conditioned for high order R  

when using MATLAB. Use of a  symbolic program, such as Maple or Mathematics, 

might reduce this problem, but with currently available computational facilities the 

resulting run times are excessive. Furthermore, R a becomes poorly conditioned for 

large fundamental periods, T, due to the scaling of some of the entries by e~7,T 

(see Appendix B for the definition of the 7 ,). This problem is generic in that the 

7 ,- are symmetric with respect to the origin. Thus, as T  gets large Ra will become 

increasingly poorly conditioned if any of the 7 ,- have a “large” real part. The only 

way around this problem is increased machine precision. The form of the resulting 

controller parameters, a(s), b(s), and q($), provides insights that may be useful in 

“classical” repetitive controller design. In particular, the fact that the feedback gain 

function a(s) ^  6(s)_1, suggests that there may be an advantage in introducing a(s) 

as a  new design parameter in classical design. In this case a(s) effectively opens the 

outer loop at low frequency, which serves to help eliminate repetitive action. However, 

other choices, such as a  low pass a(s), may lead to better classical repetitive designs.

The extension of the existing infinite dimensional H°° optimal control theory, 

required to solve the associated vector H°° problem, is of independent theoretical 

importance. The extension of these results to vector problems of different dimensions 

is straight forward. The extension to non-scalar inner infinite dimensional factors is
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not straight forward, but the mathematical techniques involved should remain essen­

tially the same. For small delays (less than the system time constant) the numerical 

difficulties with respect to the delay term would be effectively eliminated. How­

ever, for repetitive control the delays must always be large (several times the system 

time constant). While numerical/computational difficulties presently prevent practi­

cal repetitive controller design using this formulation, there is considerable promise 

that, with the ever improving speed and computation power of computers and ad­

vances in multi-precision algorithms, it will become possible. Furthermore, in light of 

the results of Chapter IV, there is considerable reason to believe that the formulation 

will, at that time, provide usable practical designs.



www.manaraa.com

CHAPTER IV

Nominal Performance W ith Robust Stability

In this chapter we consider the “two-block” (nominal performance with robust sta­

bility) formulation of the continuous-time H°° optimal repetitive control problem. 

The primary advantage of the two-block formulation is that when the performance 

weight, W'i(s), and the robustness weight, are properly chosen the numerical

difficulties associated with H°° optimal repetitive control are significantly reduced. 

The drawback is tha t we sacrifice specific guarantees with respect to maintaining the 

desired performance in the face of plant variations.

4.1 Initial Stabilization and Approximate Inversion

In repetitive control design the nominal plant, Pn{s), is generally assumed to have 

been stabilized by an initial stabilizing controller, d(s). The stabilized plant, P (s), is 

then typically approximately inverted, over the performance region, by the compen­

sator , 6(s), see Figure 15. Note that this formulation corresponds to the two degree 

of freedom control problem, where one degree of freedom is fixed by the selection 

of the initial stabilizing controller, d(s), see Chapter III. This formulation leads to 

the equivalent approximate system shown in Figure 16. In this section we prove a 

lemma giving sufficient conditions for stabilization of the system in Figure 15 using

52
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]PWC(s)

I____
d(s)

b(s)a (s)

Figure 15: System structure, nominal performance with robust stability problem. 

„ +r ----- « o — ►0 (8) -----►

Figure 16: Simplified structure assuming perfect inversion of the stabilized plant.

controllers, C(s), designed for the equivalent approximate system shown in Figure 16. 

We also give a simple formula for bounding the reduction in high frequency robustness 

due to the approximate nature of the plant inversion.

It is well known, see e.g. [22], that the system of Figure 15 is internally stable 

iff the four transfer functions: 5  := (1 +  C P )~l ,P S , C S , and T  :=  P C S  are all 

stable. While the controller d(s) ensures that P(s) is stable, it cannot ensure that it 

is minimum phase. Thus we introduce the factorization, P(s) =  rap(s)P0(s), where 

P0(s) is outer (minimum phase] and mp(s) is inner (all pass). In order to  obtain 

controllers with a  repetitive structure, see Section 4.3, we introduce inner factor, 

m (s) :=  e~sT, which can be thought of as having been factored out of a(s), i.e. 

a(s) :=  m (s)C (s). In order to ensure the stability of the resulting design (by ensuring 

the stability of b, see Lemma 4.1.1), we only attem pt to invert the outer factor, P„(s),
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of the stabilized plant, P(s). The approximate system, assuming that 6(s ) /3(s) =  

b(s)P0(s)m p(s) =  mp(s), is shown in Figure 16. It should be noted that even though 

we are just attem pting to invert the outer part of a  stable plant, the inversion is 

necessarily approximate irrespective of plant uncertainty. The inversion must be only 

approximate because all physical plants, Pn(s), are strictly proper, i.e. they have 

zero response a t infinite frequency. Furthermore, stabilization of the strictly proper 

plant, Pn(s), by any realizable (proper) initial controller, d(s), results in a strictly 

proper stable plant, P (s). Thus, to exactly invert the plant would require an improper 

(unrealizable) compensator, b(s). However, for all practical purposes it is sufficient 

th a t b(s) approximately invert the plant over a finite frequency band (including the 

“performance band”), see [96] and Lemma 4.1.1 below.

Since the equivalent plant, m p(s)m (s), is stable, the parameterization of all sta­

bilizing controllers is given by

C(s) =  (4.1)

where Q(s) E H°° is a  free parameter. Recall that classical repetitive controllers have 

unity feedback in the repetitive block, see Figure 3 and (2.1). Thus the repetitive 

structure for a(s) :=  m(s)(7(s), shown in Figure 17, is a  modified repetitive structure 

for m p ^  1. Note th a t for Q(s) unity-low pass (i.e. Q(ju>) ~  1 at “low” frequencies) 

and m (s) =  1, the controller a(s) has a classical repetitive structure. Indeed, the 

sensitivity function of the system shown in Figure 16 is S(s) =  1 — m p(s)m (s)Q (s) 

and the corresponding complementary sensitivity function is T(s) =  mp(s)m (s)Q (s).
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m(s) Q(s)

a w

Figure 17: Modified repetitive structure of o(s).

R e m a rk  4.1.1 The fact that the modified repetitive structure (see Figure 17) for  

non-minimum phase plants arises naturally in the parameterization o f all stabilizing 

controllers, implies that it is a superior structure with respect to obtaining stable 

repetitive control systems.

W hether or not the modified structure is superior with respect to obtaining good 

repetitive performance is not immediately obvious, but it does warrant further re­

search.

Using the parameterization of all stabilizing controllers, we can state a lemma 

giving sufficient conditions for system stability under approximate inversion. Note 

that accurate inversion can only be obtained where the plant uncertainty is low. 

Thus, where plant uncertainty is high (i.e. in the robustness region) the plant cannot 

be accurately inverted.

L em m a 4.1.1 (A pprox im ate  Inversion) I f  d stabilizes Pn, C stabilizes m pm , b 

is stable, and 11(6/5, -  l)(3Hco < ^  ^ ien system shown in Figure 15 is internally 

stable.
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P roof: Recall from (4.1), that the parameterization of all C that stabilize mpm, in 

terms of the free parameter Q G f/°°, is given by

^  =  l - m p(s)m (s)Q (s)' (4*2)

Using the fact that a(s) := m(s)C’(s), we have that the four transfer functions that

characterize internal stability are:

c/ \ _  1 -  mp(s)m(s)Q(s)
1 +  (b(s)P0{s) -  1 )mp(s)m(s)Q(s) ’

C (s)S(s) — _________m(s)Q(s)b(s)_________
W  W  -  i +  (6( ,)p 0(5) - i ) mp(5 )m (5 )Q(5) ’ ^ A >

P (s)SU ) -  *”> ~  ” >(*)”  W ( * ) )  ^  f4 5 )
( ) O  ”  l +  (6(s)P.(S) - l ) m p(s)m(5)(?(s)’ (4>5)

T fa\ _  mp(s)m(s)fe(s)P0(a)g(s)
1 +  (6(s)P0(s) -  l)m p(s)m (s)Q (s)’

Since C(s) stabilizes mp(s)m(s), we know that Q(s) G H°°, so the numerator of S(s)

is stable. Furthermore, since b(s) and P0(s) are both stable, all of the numerators are

stable. Finally, the common denominator will be stable if

|(M>. -  lK m G IU  =  ||(tP. -  lJOIloo < 1 . a  (4.7)

Note that while the conditions given in the Lemma 4.1.1 are conservative, they are 

not very restrictive nor difficult to satisfy. Clearly, the approximate inversion must 

be highly accurate wherever |£J(jw)| is relatively large (e.g. the performance region). 

Conversely, where |Q(ju;)| is small (e.g. the small gain region) the approximation can 

be very course. Indeed, the product b(s)P0(s) can be allowed to go to zero in this

region with very little adverse effect. Recall that for “good” designs, the small gain

region (frequencies where the loop gain is less than one for all possible plant variations)
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is semi-infinite. Thus the only practical impact of under-inversion ( \b(juj)P0(juj)\ <  1) 

in this region, is a reduction in the high frequency robustness bound. High frequency 

robustness is normally quantified via the complementary sensitivity function, T(s), 

introduced above. The following lemma gives an upper bound on the reduction in 

robustness due to under-inversion (\b(jw)P0(ju)\ =  / ? < ! ) .

D efin ition  4.1.1 (ro b u stn ess  red u c tio n  fac to r) The robustness reduction factor, 

8(T ,uj), is defined to be the ratio o f the absolute value of the actual T(joj) to the ab­

solute value obtained with exact inversion (b(s)P0(s) =  1), i.e.

c/rp \ _  b{3u))P(3'x>) . .
1 +  (b (ju )P (ju ) -  l)m p(ju)m (ju)Q (j(jj)'

L em m a 4.1.2 (ro b u stn ess  red u c tio n  bound)

I f  |<2(ju>)| <  a  < ^  and \b(jw)P0(jw)\ = P <  1, then 6(T,w) < ^
2  ’ v 1 - ( 0  +  1)0 *

P roof: A worst case bound for a rational function is the maximum possible numerator 

divided by the minimum possible denominator. Since, m p(s) and m(s) are inner, 

\b(ju})P0(joj)Tnp(ju)m(juj)Q(juj)\ = /3\Q(juj)\. Similarly, we have the inequality 

\l + (b{jw)P0( ju } ) - l)m p(ju )m (ju )Q (ju )\ > \l-(b ( jw )P 0( ju ) ) - l)a \  >  l - ( 0  +  l)a . 

Thus, we have

m p(ju})m(ju)b{ju)Po(ju)Q(juj)
^  (4.9)

! — (/? +  l)o1 +  (b(ju)P0(ju)) -  1 )mp(ju)m (jw )Q {jw )

Using the fact that for b(jw)P0(ju )  =  1, we have =  |<5(i^ ) | 5 which gives the

desired result. □
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Note th a t the worst case for the bound (/? =  1) corresponds to the perfect inversion 

case. Thus the bound is conservative. Furthermore, since the magnitude of P0(ju )  

goes to zero, as goes to infinity, and the magnitude of the proper rational transfer 

function b(juj) is finite for all u> € 1R, the actual robustness is significantly improved 

a t very high frequencies. That is, the true T(ju>) goes to zero, as u> goes to infinity, 

while the “ideal” (perfect inversion) T(jui) does not. Finally, a  simple example shows 

that even the worst case bound is very small for a  «  1 .

E x am p le : Let \Q(jio)\ < a t =  0.1 and 0 <  \b(ju)P0(juj)\ =  /? <  1 (under-inversion) 

for all uj G [u>(,oo), then the worst case (conservative) bound on the reduction in 

robustness is S (T ,u )  <  1/ 0 .8  or 1.9382di?. □

4.2 Solution of the Two-Block Problem

In [95], Toker and Ozbay characterize all optimal and suboptimal solutions to the 

two-block (nominal performance with robust stability) H°° control problem for a 

large class of infinite dimensional systems. This class of systems includes systems of 

the form shown in Figure 16. In this section we present a specialized version of their 

result, which is specific to the optimal solution of this smaller class of problems.

The two block (nominal performance with robust stability) problem is formulated 

in terms of a  performance weighting function, Wi(s), the sensitivity function, S(s), 

a robustness weighting function, W2(-s), and the complementary sensitivity function, 

T(s). The H°° optimal solution to this problem is defined to be the minimization,
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over all stabilizing controllers, of the performance measure 7  defined by

7  := WiS
W2T (4.10)

00

Let 7 o denote the optimal solution (minimum value of 7 ), and make the following 

preliminary definitions

"1 _  s')
r  j  ^»(«) := &,(*) A  > where (4-n )

the i\k, k =  I ...711, are the poles of W i(—a) and the outer factor G7 (s) is defined by

G ,(-* )G ,(» )
-1

(4.12)

T h e o re m  4.2.1 (T oker an d  O zbay [95]) Let the weights W ^s) and be ra­

tional functions. Then the H°° optimal solution to the two block problem defined by 

(4' 10), fo r  the system defined in Figure 16, is given by

A ,  v _  R 1o{3)E1o(3)L{8)
1 +  m p(s)m (s)F7o(s)L(s) ’

(4.13)

where L(s) :=  L 2(s ) j L \{s), which satisfies \L(jw>)\ =  1, is the ratio o f two polynomials 

o f degree less than or equal to («i — 1). The coefficients o f these polynomials constitute 

2 nj unknowns, which can be uniquely computed from the following set o f 2ni linearly 

independent equations:

0 =  Li(pt) + mp(Pk)m(Pk)F‘i.{0k)L2(Pk),

0 =  L 2(-fik )  +  rnp(fik)m(l3k)F^0(fik)Li(-l3k)i

where the zeros o f E ^ a ( f ik ,  k =  1 • • • n i )  are ordered such that f i n i +i =  — fix, 

i — 1 . .  .n i  and the first n\ zeros are in the closed right half plane (R H P ).

( 4 - W

(4 -W
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R e m a rk  4.2.1 While the solution parameter L(s) satisfies \L(ju>)\ =  1 , it is not, in 

general, an inner function, since it is not, necessarily, stable.

Replacing 7 0 with 7 , the system of equations in the coefficients of L\{s) and Li{s) 

defines a  m atrix function of 7  that must be singular when 7  =  j 0. Thus, 7 0 may 

be found as in the robust performance problem formulation of Chapter III, i.e. by 

searching over a  finite interval for the largest value of gamma that makes this matrix 

singular. Onur Toker has written a  user friendly software package in MATLAB that 

implements this theory for the more general case developed in [95].

4.3 Sensitivity Improvement Formulation

As seen in Chapter III, an important issue in H°° optimal repetitive controller de­

sign is how to ensure that the resulting controllers actually provide repetitive action. 

Recall that repetitive performance is obtained when the magnitude of the sensitivity 

function is “small” at the fundamental frequency, u)a = jr , and at a number of har­

monics, w =  ku0. Repetitive action occurs when repetitive performance is achieved 

as a  direct result of the time delay term, m (s) :=  e~sT. For the system shown in 

Figure 16, repetitive action is achieved precisely when Q(jku)0) «  1, for some set of 

integers k. One approach, that ensures repetitive action of the resulting H°° optimal 

controller, is choosing the performance weight, to have an infinite dimensional 

repetitive structure. The problem with infinite dimensional weights is that in general 

the resulting H°° optimal control problem remains unsolved. In particular, Theo­

rem 4.2.1 requires that the weighting functions W'i(s) and be rational. The
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sensitivity improvement formulation incorporates an infinite dimensional repetitive 

performance weight, Wi(s), such that the resulting two-block H°° problem reduces 

to the solution of a  two-block H°° problem that can be solved by Theorem 4.2.1.

The sensitivity improvement problem is formulated in terms of a nominal repet­

itive control design. The nominal design may be a pre-existing design or it may be 

the first part in a two part repetitive control design. The nominal design must have 

the structure shown in Figure 17. Thus, it may not be possible to use an existing 

design for non-minimum phase plants, since this is a novel structure for such plants.

D e fin it io n  4 .3 .1  (n o m in a l r e p e t i t iv e  d e s ig n )  The nominal repetitive design for  

the sensitivity improvement problem is given by Figure 17, with Q(s) = qn(s).

Typically, qn{s) € H 00 will be a low order rational transfer function that is unity- 

low pass, i.e. qn{ju)  «  1 for w € [0, ku>0]. The sensitivity and complementary 

sensitivity of the nominal design are given by 5n(s) =  1 —m p(s)m (s)qn(s) and Tn(s) = 

m p(s)m (s)qn(s), respectively. The sensitivity improvement problem is formulated by 

defining the performance weight, Wi(s), in terms of the nominal classical repetitive 

sensitivity function, Sn(s). This directly constrains the solution to provide repetitive 

performance.

D e fin it io n  4 .3 .2  (p er fo rm a n ce  w e ig h t for  s e n s it iv ity  im p r o v e m e n t)  The in­

finite dimensional repetitive performance weight fo r  the sensitivity improvement prob-
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where Wi(s) is a rational transfer function.

Thus the resulting overall sensitivity function, S(s), will tend to have the nominal sen­

sitivity function, 5 n(s), as a  factor. The solution of the resulting infinite dimensional 

two-block H°° problem is the subject of the following subsection.

4.3.1 Solution of the sensitivity improvement problem

The solution to the sensitivity improvement problem also has the modified repetitive 

structure shown in Figure 17, but this tim e the free parameter q € H°° is infinite 

dimensional.

D efin ition  4.3.3 (se n s itiv ity  im p ro v em en t p ro b le m ) The solution o f the sen­

sitivity improvement problem, defined by (4>t6)> is given by the repetitive structure o f 

Figure 17, with Q(s) = q(s).

Thus the overall sensitivity and complementary sensitivity functions are given by 

S(s) — 1 -  m p(s)m (s)q(s) and T (s) — m p(s)m(s)q(s).

The sensitivity improvement problem, in its present form, cannot be solved by 

Theorem 4.2.1, since the performance weight,

W tM  :=  M    (4.17)
Sn(s) 1 -  m p(s)m(s)qn(sY

is infinite dimensional. To convert the problem to an equivalent problem that we can 

solve, we note that

W i(s)S(s)  =  W i(s)(l -  m p(s)m(s)q(s)) = : W i(s)5(s). (4.18)
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Therefore, we have

=  lVi(s)(l -  m p(s)m(s)q(s)), (4.19)

where q £ H°° is a free parameter given by

' 1 -  m p(s)m(s)qn(sy  

or ^(s) :=  qn(3) +  {1 — mp(s)m(s)gn(a)}9 (s). Hence, we have

=  W,i(s)(l -  mp(s)m(s)g(s)) =: W i(s)S(s). (4-21)

  a
The definition of S (s ) is natural since, letting Q(s) =  q(s) in Figure 17, it is precisely 

the sensitivity function corresponding to q(s). Note that 1 — m p(s)m(s)q(s) £ H°° => 

q £ H°° for all qn, q £ H°°. Thus, whenever Q(s) =  q(s) stabilizes the system of 

Figure 16, then so does Q(s) =  q(s), assuming that the nominal repetitive design is 

stable.

R em ark  4.3.1 The sensitivity improvement design is a perturbation of the original 

design in the sense that for q(s) =  0 , we recover the nominal design, i.e. we have 

<l(s) =  ?n(s).

Since VKi(s) is a rational function, the H°° optimal solution to the sensitivity im­

provement problem can be obtained from Theorem 4.2.1 using an appropriate ratio­

nal robustness weight The corresponding complementary sensitivity function,

T(s), associated with the free parameter q(s) is T(s) := mp(s)m(s)q(s). Thus the 

optimal solution, C0(s), of Theorem 4.2.1 using Wi(s), W2(s), S(s), and T(s) in place
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of Wi(s), ^ 2(3 ), S(s), and T(s) corresponds to the optimal q(s). Letting q(s) be the
a

optimal solution, and solving for q(s) in terms of C0(s), we have

S U )  =  _ , ,
1 +  m p(s)m (s)C0(s) 1 +  m p(s)m(s)Fy(s)L(s) {£ 7 (s) +  1} ’

where 7 0 has been replaced by 7  for convenience. Now, we can define the optimal 

solution to the sensitivity improvement problem.

D e fin it io n  4 .3 .4  (o p tim a l so lu tio n  o f  th e  s e n s it iv ity  im p ro v em e n t p ro b lem )

The H°° optimal solution to the sensitivity improvement problem, defined by (4-16), 

is given by q(s) :=  gn(s) +  (1 — mp(s)m(s)g„(s))£(s), where q(s) is given by (4-22).

The resulting overall sensitivity function, S(s), is given by

S(s) =  1 -  m p(s)m(s)qn(s) -  m p(s)m (s) {1 -  TOp(«)n»(s)g,,(s)} q(s) or 

S(s)  =  {1 -  m p(s)m(s)qn($)}{l -  mp(s)m(s)g(s)} =  Sn{s)S(s). (4.23)

Thus the overall sensitivity is the product of the nominal sensitivity, S’n(s), and the 

“sensitivity improvement” term , £(s), that has a repetitive structure, where the quo­

tation marks are to emphasize the fact that the sensitivity is only improved at those 

frequencies where the sensitivity improvement term is less than one. Taking the prod­

uct of two transfer functions is equivalent to cascading the two corresponding systems. 

Thus the solution to the sensitivity improvement problem can be thought of as the 

cascade of the nominal repetitive design, as defined by qn(s), and the “improvement” 

design, as defined by q(s).
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D efin itio n  4 .3 .5  (cascade re p e ti tiv e  co n tro l) The repetitive controller, and con­

troller structure, resulting from the optimal solution of the sensitivity improvement 

problem will be referred to as the cascade repetitive controller, and the cascade repet­

itive control structure, respectively.

See Subsection 4.3.2 for more on the resulting cascade structure and Section 4.4 for 

more on cascade repetitive control.

The resulting overall complementary sensitivity function, T (s), for the cascade 

repetitive design, is given by

T (s)  =  m p(s)m(s)qn(s) +  m p(s)m (s) {1  -  mp(s)m(s)qn(s)} q(s) or

T (s) = Tn(s) +  Sn(s)T  (s). (4.24)

Note that the overall complementary sensitivity function is a (weighted) sum rather 

than a  product of the individual complementary sensitivity functions. This means 

tha t instead of having an improvement, as for the sensitivity, we have a (hopefully 

modest) decrease in overall robustness, as measured by the overall complementary 

sensitivity function. Wherever \Tn(jio)\ is small, |5n(iw)| =  |1 — Tn(ju )\ «  1 , thus 

the scaling of T(s) by •S'n(s) has little effect on the overall robustness. While the 

overall robustness (roll-off in T ) is less than that of the nominal design (roll-off in 

Tn), the reduction can typically be made insignificant through the proper selection 

of W2(s). Note that \Tn(ju>)\ = \mv{juj)m{ju)qn{ju)\ =  |9n(ju;)|, and similarly 

\T(juj)\ =  |<f(jw)|. Thus, robustness issues can be studied by directly looking at 

qn and q. Note that the high frequency behavior of q(ju>) depends directly on the
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Add On 
Structure

* o

Figure 18: Structure of the H°° optimal cascade repetitive controller.

high frequency behavior of W ifju ). The goal is to find choices of Wi(s) and W^(5) 

that will lead to enhanced repetitive performance in the frequency band(s) of inter­

est, while preventing any significant reduction in the overall robustness. For more on 

weight selection for repetitive control see Section 4.6.

4.3.2 Resulting controller structure

The resulting H°° optimal controller has an add-on structure, see Figure 18. Re­

call that by “add-on structure” we mean that the “new” part of the controller, 

{1  — mp(s)m(s)g„(s)}g(s), can be connected in parallel with some portion of the 

existing controller, in this case qn{s). The new structure generally requires a total 

of three delays to implement (the delay from the nominal design plus two additional 

delays), but it can provide significant sensitivity improvement while maintaining ade­

quate robustness. Furthermore, through judicious weight selection, see Section 4.6, a 

reduced order approximation with a simplified structure having only two delays can 

be obtained, see Subsection 4.3.3.
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To see how we arrive at the structure shown in Figure 18, recall the definition of 

q (4.22) in terms of C0, from Theorem 4.2.1,

» =   E , ( s ) F , ( s )L (s )

1 +  rap(3 )m(s)C0(s) 1 4- mp(s)m(s)F^(s)L(s) {£-,(3 ) +  1}

Recalling that q(s) := qn(s) +  {1 -  mp(s)m(3)gn(s)} q(s) and the definition of C(3), 

we have

« * ) : "  m w e w = r ^ w & j ’ ,4-26)

which yields the structure shown in Figure 18 for the overall combined (cascade 

repetitive) solution to the sensitivity improvement problem.

R em a rk  4 .3 .2  While the “cascade repetitive” design o f Figure 18 is a cascade design, 

in the sense that the overall sensitivity in the product of the individual sensitivities 

o f the nominal design (qn) and the improvement design (q), it will only be a truly 

cascade repetitive design ifq  provides repetitive action.

Recall that the sensitivity function can be factored as

S(s) =  {1 -  mp(s)m(s)gn(s)}{l -  m p(s)m(s)q(s)} =  Sn(s)S(s). (4.27)

It is clear from this factorization that the maximum sensitivity improvement, as 

measured at the harmonics, is obtained precisely when S(s) := 1 — mp(s)m(s)g(s) 

provides repetitive action. That is, we want S(juiak) «  0 for some set of integers, k.

R em a rk  4 .3 .3  (im p o ss ib ility  o f  p erfec t p erform an ce) We cannot ever achieve 

5 (3 ) := 1 — mp(s)m(s)q(s) =  0, since q € H°° must be stable and causal.
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a  _
In order to get S(ju>ok) »  0, we need q(juak) «  l/m (ju)0k)m p(ju}ok). Thus, ideally 

we would like q € H°° to invert both m p(ju 0k) and m(juJok) for the required set of 

integers k. We make the following observation with respect to achievable performance 

(improvement) via q:

•  Exact inversion of mp(s) by q(s) is impossible, since all the zeros of mp(s) are 

in the right half plane (RH P) and q(s) must be stable.

•  Exact inversion of m (s) by q(s) is impossible, since m (s) := e~aT is a pure time 

delay and q(s) must be causal.

•  Approximate inversion of m(ju}ok) is not difficult, since m (juok) = e*u k  =  1.

•  Approximate inversion of m p(juok), on the other hand, presents a significant 

problem, since the phase of m p(ju>ok) is different for every k.

This explains why there will be significant reductions in achievable performance for 

certain non-minimum phase systems, i.e. for those systems where there is significant 

variation in the phase of m p(jui) over the performance region. The selection of the 

performance and robustness weights, W\ and such that q that provides repetitive 

action are discussed in Section 4.6.

R em ark  4.3.4 In general, q(s) is an irrational function, see (4-25), but ifq (s) could 

be approximated by a low order rational function, then the solution o f the sensitivity 

improvement problem would be the stable cascade of two classical repetitive controllers.
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The conditions under which £(s) can be approximated by a low order rational function 

are discussed in Subsection 4.3.3 and selection of appropriate weights is discussed in 

Section 4.6.

In order to better understand the controller structure and the issues involved in 

obtaining reduced order/complexity approximations, we must take a detailed look at 

the rational components, î 7, J37, and L. Irrespective of cancellations that might occur 

due to the particular weight selections, there are structural cancellations that occur 

in the forming F ^ s ) ,  2?7 (s).F7 (s), and +  1). To see where the cancellations

occur, we must take a closer look at the definitions of these terms. In so doing we 

will also be able to calculate an upper bound on the combined structural order of the 

rational components of the infinite dimensional cascade repetitive controller a(s).

Let W i(s) = : Nwi (■s)/Diy, (<9), where the polynomial Dwi (s) is taken to  be monic. 

Similarly,let = : Nw3(s)/dW 2 (s). Finally, let Nwj.(s) := Nw1(s)/'ll and Nw?{s) ’■= 

Nw3{s)/7 - Now, by definition, see Section 4.2, we have

n Nwt {-s)N w t(s) -  D Wl{ -s )D Wl(s) , t ooX
= ---------- DWt( s ) D WlM  “ d (4'28)

f t f a — 4 = ( - i ) - 0 n ‘(r t ) - <4-29)B \ ( V k  +  s )  D Wl(s)

Similarly, for G-)(~s)G y(s) we have

r  ( -  ( \ -  O w 1{ - a ) D w i { a ) d W 2( - 8 ) d W 2{s) _  nG7(-s)nG 7(s)
dG7 ( -s )d G 7 (s) ' dG7 (-s )d G 7 ( s ) ' 1 ‘ }

Thus, by inspection, we have n(?7 (s) =  Dw1 From the definition of Fy(s),

after cancellations we have

-  G’ w  f i  f e y  -  D w' k m {s ) - <4'31>
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Similarly, after cancellations we have

F  ( iVF (A  ( 11”’ “  DWl{ - s )D Wi(sj) dW2(s)
Fy(s)E ,(s) -  ( -1 )  ---------------------D Wl(s)dG ,(s)--------------------- • (4<32)

Now, we can readily determine the structural upper bound on the order of a(s). 

Prom (4.30) we see that ord (Gy) =  ord(W \) +  ord(W 2), from (4.31) we see that 

ord(Fy) = ord(G 7), from (4.32) we see that ord(F^E-t) — 2ord(W i) + ord{W 2), and 

by definition ord(L) < ord (W \) — 1. Thus the upper bound on the structural order 

of the rational components of a(s) is

ord (a) <  5ord ( Wi) -  1 +  ord +  2ord (^n) +  3ord (mp) . (4.33)

R e m a r k  4 .3 .5  The structural upper bound on the total order o f the rational compo­

nents o f a(s) is not o f any practical importance, since for properly selected weighting 

functions the resulting controllers can be well approximated by much lower order ra­

tional parts within a simplified cascade repetitive structure, see Section 4-6-

While the existence of right half plane (R H P )  plant zeros (mp(s) / l )  does not 

significantly impact the structural upper bound on the total order of the optimal 

controller, the relative impact is magnified in the reduced order case. Furthermore, 

the presence of R H P  plant zeros reduces the achievable repetitive performance, often 

significantly.

4.3.3 Reduced order control with a simplified structure

In this subsection we explore ways to obtain rational approximations for q(s) and 

the conditions under which it can be done. Recall from (4.25), th a t in terms of the
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A

Figure 19: Simplified cascade repetitive structure (Ey(ju) «  - R y  «  " I ) .

solution parameters of Theorem 4.2.1, we have

f t  \ _ _________ E’j{s )F'i(s )L{s)_________  U
9(3> ~  1 +  m p(s )m (s )F 7( s ) I ( s )  { £ 7 (s )  +  1} * K V

By inspection, the only way that we can obtain a  nonzero rational approximation for 

q(s) is if we can replace E^(s) with —1. Recalling that

(4 35)

we see that E^(s) =  —1 iff Wi(s) =  0. Clearly, we cannot have a performance 

weight Wi(s) =  0 for a sensitivity improvement problem, or for any meaningful 

problem formulation. Thus the approximation must consist of two parts, i.e. we need 

E^(ju) «  — f?7 outside of a “small” frequency band, and we also require that the 

constant, Ey < 1 , be approximately equal to one.

R em a rk  4 .3 .6  To obtain a rational approximation for q(s), and the corresponding 

simplified cascade repetitive structure o f Figure 19, we must be able to make the double 

approximation E-,(ju) «  —E«, «  -1 .
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R e m a rk  4.3.7 Whether Ey(ju )  fsf —Ey, depends entirely on the weighting func­

tion, W \, while whether Ey «  1, also depends strongly on the robustness weight, Wi, 

through its effect on the value of 7 .

The selection of weighting functions that achieve these objectives is discussed in Sec­

tion 4.6. The goal at present is to explore the implications of making the double 

approximation and resulting simplifications in the cascade repetitive controller struc­

ture.

A
R em a rk  4.3.8 Under the double approximation, Ey(ju>) «  - E y «  —1 , we have

A* jf
q(s) «  — F7 (s)Z(s) =: q(s), which gives S  =  1 — m pmq =: S  and T  =  m pmq =: T.

The resulting simplified cascade repetitive controller structure is shown in Figure 19. 

The desirability of this simplified structure, as compared to the original structure 

of Figure 18, is quite obvious. Not only has an entire infinite dimensional block 

(including a delay term, m) been eliminated but there has been a significant reduction 

in the total order of the rational components of a(s).

R e m a rk  4.3.9 The simplified cascade repetitive controller will result in a stable 

closed loop system iff q(s) := - F y(s)L(s) is stable, i.e. iff q& H°°.

The transfer function Fy(s) is stable by construction, see (4.31) in Subsection 4.3.2. 

However, there is no guarantee that L(s) will be stable, see Theorem 4.2.1 and Re-
A*

mark 4.2.1. Thus if we wish to make the double approximation, Ey(ju>) «  —Ey ~  —1, 

we must be certain that the corresponding L(s) is stable. (Strictly speaking, we only 

require that Fy(s)L(s) is stable, which could (theoretically) happen when L(s) is
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unstable, since Fy(s) is non-minimum phase.) Conversely, since this approximation 

leads to instability whenever L(s) is unstable, one would expect that for any robust 

design for which Ey(ju )  - Er »  — 1, that the corresponding L(s) would indeed be 

stable. This is exactly what happens in practice, see Section 4.7.

R e m a rk  4 .3.10 I f  q(s) provides repetitive action and Ey(ju )  ~  - E y «  —1 , then 

the simplified reduced order cascade repetitive controller provides classical repetitive 

action, i.e. q(ju>) «  1 in the performance region.

This, rather intuitive, observation is illustrated by the numerical examples in Sec­

tion 4.7.

W hether the sensitivity properties axe maintained depends on whether the corre­

sponding cancellations in Fy(s) are made. Recall from Subsection 4.3.2, that there 

are structural cancellations in taking the product Fy(s)Ey(s). Thus, making the ap­

proximation Ey(ju>) «  —Ey ft* —1, without making the corresponding cancellations 

in Fy(s), causes significant distortion in the frequency band where Ey is not well 

approximated by a constant (i.e. near o>p, see Section 4.7).

R e m a rk  4.3.11 The simplified cascade repetitive structure, o f Figure 19, can be 

thought o f as a framework for robustly cascading two classical repetitive controllers. 

Indeed, the two unity-low pass filters, qn(s) and q(s), in this controller structure, can 

be designed using any method so long as they are both stable and that the combined 

robustness, see (4>̂ 4)> Is adequate.

Recall that the cascade repetitive controller parameter, q 6  H°°, is the free param­

eter corresponding to the optimal solution of the two-block problem of Theorem 4.2.1
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(with W\ =  W\ and Wjj =  W2). Thus the approximation E^(ju>) «  «  —1 , also

has implications for the solution of this problem irrespective of any relationship with 

the sensitivity improvement problem. From Theorem 4.2.1, we have

_  &,(<)£> W f r ) _____________- f ,(« )£ (« )  . . .
1 +  mp(s)m(s)F7(s)Z(s) ~  1 + mp(s)m(s).F7(s)L(s) ’

Letting C(s) — C(s) in Figure 16 and recalling that q —F^L, we have

( 4 3 7 )

which has a  repetitive structure. Specifically, it has the modified repetitive structure 

of Figure 17, with Q(s) =  g(s). Hence, there is a certain equivalence between “good” 

solutions to the sensitivity improvement problem and the direct design of H°° optimal 

repetitive controllers.

4.4 Direct H ° °  Optimal Repetitive Controller Design

As we saw in the previous section, there is a certain equivalence between obtaining 

repetitive sensitivity improvement (cascade repetitive control) and direct H°° optimal 

repetitive control. In this section we explore this equivalence and exploit it to directly 

obtain H°° optimal repetitive controllers for any rational nominal plant P„(s). While 

the method is applicable to non-minimum phase plants, it is not always possible to 

achieve broad band repetitive action for non-minimum phase plants, see Section 4.7. 

The resulting controllers do not have an add-on structure, but do have a simple 

repetitive structure with one delay term, m (s) :=  e- *7’, and at most three rational 

transfer functions, see Figure 20.
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a(s)

Figure 20: Controller structure for direct H°° optimal repetitive control. 

D efin itio n  4.4.1 (d ire c t H°° o p tim a l re p e ti tiv e  co n tro l p ro b lem ) The direct H°°
«  A

optimal repetitive control problem is defined by setting C(s) =  C(s) in Figure 15, 

where C(s) is as defined in Theorem 4.2.1.

Thus the sensitivity of the direct design is S  :=  1 — m pmq, which is precisely the 

sensitivity improvement of the cascade design, see (4.27). The direct H 00 optimal 

repetitive control problem is directly related to the sensitivity improvement part of 

the overall sensitivity improvement (cascade repetitive) problem.

R e m a rk  4.4.1 (equ ivalence to  th e  sen s itiv ity  im p ro v em en t p ro b le m ) The sen­

sitivity function of the direct design and the sensitivity improvement term o f the cas- 

cade design are both given by S  :=  1 — m pmq, see (4.27). Furthermore, the com- 

plementary sensitivity function, T  :=  m pmq, of the direct design is the “robustness 

reduction” term for sensitivity improvement design, see (4 -2 4 ).

In other words, any given choice of weights and the corresponding solution to Theo­

rem 4.2.1 has two distinct, but essentially equivalent, interpretations. Thus, we can 

study the achievable performance for both formulations simultaneously and without 

distinction.
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Recalling that q(s) :=  —Fy(s)L(s) and the definition of C(s) from Theorem 4.2.1, 

we have

« (,) :=  m (s)C {s) = m (s)C (S) = - £ , ( , )  (4.38)

which has a simple repetitive structure. The unique property of this H°° optimal 

repetitive controller is that q(s) is non-minimum phase. The rational filter block 

—1&y(s) is, strictly speaking, both unstable and non-minimum phase, however under
A

the approximation Ey(ju>) fa —Ey fa —1 , we recover the simple repetitive structure 

of Figure 17 with Q(s) =  q(s).

R e m a r k  4 .4 .2  In general q may actually be unstable (due to the possible instability 

o f L ), however in practice, whenever E~,(ju) «  — fa —1, the corresponding L will 

be stable, ensuring the stability o f q (see Remark 4-3.9).

Actually, L(s) typically turns out to be stable even when E ^(ju ) fa —E^ =  —p, where 

0 <  p «  1. To see why this is the case we examine the gain margin for the direct 

H°° optimal design problem, under the approximation Ey(jui) fa - ET =  - p .

R e m a r k  4 .4 .3  Strictly speaking, q(s) is unstable iff L(s) has an unstable pole that 

is distinct from all o f the poles o f W i(—s), i.e. all o f the qk, k =  l . . . n i ,  see 

Theorem 4-3.1. However, in practice the poles o f L{s) are distinct from  the r}k with 

probability one.

Thus, in order to be excruciatingly correct, we state the lemma in terms of the 

technical conditions on the instability of q.
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L em m a 4.4.1 (G ain  m arg in  for Ey(ju) fa ~E y = - p ,  0 < p <  1) Whenever L(s) 

has an unstable pole distinct from all o f the rjk, k =  1 . . .  n\, p~l is the positive gain 

margin of the direct design, i.e. the system is unstable for b(s)P(s) = m p(s)fp.

Proof: The free parameter q € H°° (4.22) parameterizes ail stabilizing controllers,

i.e. the closed loop system is stable iff q(s) 6 H°°. Considering Figure 16, it is clear 

that if b(s)P(s) =  8mp($), for some 6 > 0, then we must absorb 6 into C. Setting 

Ey(s) — —p and absorbing 6 into C (s)y we have

r t<)  -  ~pSFy(s)L(s)
; 1 +  mp(s)m(s)F1(s)L(sY  1

Solving for q(s) from

£(a) = --------- Sf ] — (4. 40)
l+ m p(s)m(s)C(s) [ ’

we have

m  = ________ -pSFJ.>)U»)________  (4 4])
n  l l + m p(5 )m (s)F ,(s)I(s)(l -  p6)' '  '

Clearly, for 8 =  1/p we have q(s) = —Fy(s)L(s), which is not in H°° under the 

conditions stated. □

Thus we see that for any design with any robustness at all, whenever Ey(ju)  «  

- E y fa —1 the corresponding L(s) will indeed be stable.

R em ark  4.4.4 When the sensitivity improvement problem is taken to be a two part 

design procedure (i.e. qn(s) is not part of a pre-existing design), the nominal design 

can be taken to be the solution of the direct H°° optimal repetitive control design 

problem under the approximation Ey(ju>) fa —Ey fa —1, by letting qn{s) — q{s )-
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4.5 Two Step Repetitive Controller Design Procedure

The design methodology used in this chapter is a multi-step methodology which in­

cludes, in general, the design of an initial stabilizing controller, d(s), an approximate 

inversion filter (compensator), b(s), and the design of a  robustly stable H 00 opti­

mal repetitive controller. In the sensitivity improvement problem there may be an 

additional step to design the initial repetitive controller, unless the nominal design 

already physically exists. In this section we: take a closer look at the methodology, 

look at the interaction between the design of the various elements, and break the 

methodology down into two primary steps that are largely independent.

The design procedure consists of the following two steps:

1. Design the initial stabilizing controller, d(s), and the approximate inversion 

compensator, b(s).

2. Design the H 00 optimal controller for the equivalent plant, mp(s)m (s), using 

Theorem 4.2.1 (for either a direct or a cascade design).

The first step includes all of the finite dimensional filter (compensator) design, while 

the second step includes the infinite dimensional design that obtains the repetitive 

performance. It should be noted that there is nothing unusual about the controller 

approximately inverting the plant over the performance region. Indeed, approximate 

inversion in the performance region is inherent to optimal control and is the basis 

of the “Dynamic Inversion” design methodology [10, 26], which extends the con­

cepts and techniques of H°° and /i-syntesis to systems with nontrivial nonlinearities.
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Furthermore, the two steps are essentially independent, with the only connection 

being the requirement that j|(6F -  1)Q||<» < 1 (see Lemma 4.1.1) to ensure sta­

bility under approximate inversion, where Q(s) =  q(s) for the direct design and 

Q(s) — q(s) := qn(s) +  {1 — mp(s)m(s)gn(s)} q(s) for the cascade design. The finite 

dimensional problems involved in Step 1 are not the subject of this chapter, but a 

few comments are in order about Step 1 and the interaction with Step 2.

It may be desirable to complete step 2 first so that one knows how accurately the 

plant must be approximately inverted, and over what region this accuracy is required. 

On the other hand, the relative difficulty of achieving accurate inversion over a given 

region should be taken into consideration when designing Q(s). The design of the 

initial stabilizing controller, d(s), and the approximate inversion compensator, b(s), 

is highly coupled, i.e. the choice of d(s) has a dramatic impact on the ease with which 

the resulting stable plant P (s) can be approximately inverted over the performance 

region. Obviously, d(s) and b(s) should be chosen to minimize their combined order, 

subject to the constraint of obtaining adequate inversion over the performance region.

R em a rk  4.5.1 I f  at all possible, the initial stabilizing controller, d(s), should be 

chosen so as not to introduce right half plane (RH P) zeros in P(s), i.e. d(s) should 

be stable. The problem, o f finding stable controllers is known as the strong stabilization 

problem, see [22].

Recall, see [22], that strong stabilization is stabilization by means of a stable con­

troller. It should be emphasized that this principle holds true whenever one is using 

initial stabilization to be followed by any control technique, since non-minimum phase
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plants are universally troublesome with respect to control design.

4.6 Weight Selection

In general one selects the performance weight, Wi(s), to be large at frequencies where 

good performance is required (typically “low” frequencies) and the robustness weight, 

1̂ 2(5 ), to be large at frequencies where the plant uncertainty is large (typically “high” 

frequencies). Note tha t when one is considering the sensitivity improvement problem, 

the “performance” weight may be better described as the “performance improvement” 

weight. In this section we address the special issues involved in selecting rational 

weighting functions that result in controllers that provide repetitive performance.

In order to  obtain repetitive action, it is important that the robustness weight 

be essentially flat over the performance region. To understand why this is im portant 

recall that for repetitive action to occur we must have nearly identical phase and 

gain characteristics at a  number of discrete frequencies uniformly distributed over 

the performance region. In particular, we require q(ju)0k ) « 1 ,  k — 1 . . .  n  for both 

the direct and cascade design problems, see Remark 4.4.1 in Section 4.4. The choice 

of the performance weight is a  little more subtle. While the choice of a constant 

performance weight would be desirable with respect to having perfect phase properties 

over the performance region, the resulting H°° problem is ill-posed. The next closest 

thing, with respect to constant phase, is to place a very sharp spike at one of the 

harmonics (Art*;,,). This “key” harmonic should be chosen to  be an especially important 

“high” frequency harmonic. The generic weight structures for obtaining repetitive
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performance are

fS> /  \ S 2 +  2 CnWp5 +  w j  J jj  3  +  « 2  , ,
W i(s) =   — f  and W2(s) =  K 2 , , • (4.42)s2 +  2(dWps +  w2 s +  62

In order for the resulting design to provide repetitive behavior, it is necessary that 

the effects, including phase, of the single spike in W'i(s) be localized to just the single 

harmonic. This is accomplished by selecting („ sufficiently small. Note tha t given 

Cn >  (d sufficiently small, we have W i(juj) «  1 , outside of a small frequency band 

centered around w = u>p. Thus, we have

£ W « )  :=  ( l t ' ' (~ ) * (l“ l -  l )  *  (4.43)

which implies that Ey(jui) «  —Ey is automatically satisfied whenever Wi is selected 

to obtain repetitive performance. The spike height, which is proportional to (n/(d, 

must be very large before the resulting controller will provide repetitive action, see 

Section 4.7. Thus, & must be selected to be sufficiently small compared to £„ so that 

adequate spike height is obtained. Turning our attention to the robustness weight, a 2 

determines the boundary (design trade-off) between the performance region and the 

uncertainty region and 62 >  0-2 is chosen such tha t sufficient high frequency robustness 

is obtained. This leaves K 2 as the only remaining free parameter. Thus, K 2 is selected 

such th a t »  1. This must be done indirectly through the impact of K 2 on the 

design measure 7 .

R e m a rk  4.6.1 For any Wi(s) defined by (4-4®), we have Ey =  1 — 7  .

Substituting the generic form of W i(s) into the definition of Ey(s), we see that 

s4(7"2 - l )  +  --- +  u£(7“2 “ l )

4=  ; + . . . + j — -  <*•«*>
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Thus, i£y(0) =  E.y(oo) =  (7 -2  — 1 ) =  — i?7, so that E~,(ju)) «  — Ey w —1 , precisely 

when 7 -2  w 0 , i.e. when 7  > >  1 . Consequently, it follows that K? should be chosen 

such that 7  is large.

R e m a rk  4.6.2 When E^(ju>) «  — F 7 «  —1 , we get F7 (s) «  7 {W/2(s)}-1 . Further­

more, a reduced order F-, of this form must be used whenever E7(s) is replaced by — 1, 

to prevent significant reduction in performance at the “key” harmonic u p.

The general form of the reduced order approximation for Fy follows directly from 

substituting E-, «  — 1 into the definition of Fy, see Theorem 4.2.1. In particular, with 

W 2(s) replaced by ^ ( s ) ,  we have

Substituting this expression into the definition of Fy, we have

F ,( .)  := G ,(a) f t  (4-46)
jT=i W * +  s ) ^ 2 ( 5 )  Jt=i (.Vk +  3 )  

since the inner function defined by the J?fc has highly localized phase properties. In 

practice there are, typically minor, perturbations to the zero of as it becomes

a pole of F7 (s), and corresponding perturbations to the gain constant 7 / F 2 > see 

Section 4.7.

R em a rk  4.6.3 The resulting reduced order repetitive controller parameter, q, is a 

second order, stable, non-minimum phase, rational transfer function providing clas­

sical repetitive action, i.e. q «  1 in the performance region.
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An interesting feature of q is that the resulting performance is “centered” around ojp. 

That is, $ {ju )  :=  1 — m p(jw)m(juj)q(ju)) is smallest (provides the best performance) 

at u> =  u>p and increases (provides decreased performance), almost symmetrically, at 

the higher and lower harmonics (at least for “nearby” harmonics). This symmetry 

property is a natural consequence of the symmetry in the definition of W\. Similarly, 

the symmetry of the performance breaks down as we move away from wp, since the 

effects of the robustness weight become more and more asymmetrical.

R e m a rk  4 .6 .4  While mp(s) significantly impacts the achievable broad band repetitive 

performance, see Remark 4-3.3, it does not significantly impact the outer factor, F t, 

o f the repetitive controller parameter, q :=  —F^L, see Section 4-7.

The direct explanation for this phenomenon is that m p has little effect on 7 . There 

are two parts to  the explanation of why m p has little effect on 7 . First, W 2 is selected
A

such that £?7 w 1 = ^ 7 > > 1 , which tends to dominate any impact of m p on 7 . 

Second, we are really only demanding good performance at the single harmonic, u>p, 

and m p(ju>p) is just a simple phase shift that is easily inverted by the inner part (L) 

of the non-minimum phase repetitive controller parameter, q :=  —FyL. While L can 

easily invert mp at a  single frequency, it cannot invert m p completely since q :=  —F1L 

must be stable. Thus, even though mp has little effect on 7  (or the performance at 

iop) it does reduce, often significantly, the performance at the other harmonics.

R e m a rk  4.6.5 The extension o f the above to higher order weighting functions is 

obvious, and could potentially achieve better broad band repetitive action, particularly
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fo r  the non-minimum phase case. The costs o f higher order weights are higher order 

controllers and increased numerical difficulties.

The primary complication, with respect to weight selection, when using higher order 

weights, is choosing the appropriate relative spike heights to obtain the desired broad 

band repetitive performance. For all practical purposes, the required relative spike 

heights would have to be determined by trial and error. Numerical difficulties come 

from the fact that calculating the H°° optimal solution using Theorem 4.2.1 involves 

polynomial operations (such as root finding) that tend to become ill-conditioned as 

order increases.

R e m a rk  4 .6 .0  The numerical difficulties (such as those encountered in Chapter III) 

associated with the delay term  m(s) :=  e~aT are greatly reduced due to the fact that 

all o f the (Ik (see Theorem 4-2.1) are nearly on the imaginary axis, thus keeping the 

m(Pk) from  getting excessively large.

The fact that the /?* (zeros of Ey) are very close to the imaginary axis is a direct 

result of the generic form chosen for Wi, see (4.42). This is most fortunate because 

if any of the /?* had significant real parts then it would be impossible to calculate 

the solution to the two-block H°° problem of Theorem 4.2.1 without resorting to 

multiprecision, as the sixteen decimal digits of precision available in MATLAB would 

not be sufficient.

R e m a rk  4 .6 .7  In an approximate sense, the above design procedure reduces to se­

lecting the key harmonic, u)p, and the approximate form  ofF'y, via W 2 , and calculating 

the corresponding optimal inner function L.
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This view of the design process raises the possibility of choosing W 2 to be proportional 

to the inverse of a higher order unity-low pass filter. However, even a higher order 

W 2 would tend to exacerbate the numerical difficulties due to W\ having poles (and 

zeros) near the imaginary axis. Furthermore, excellent sensitivity improvement can be 

obtained using a second order (single spike) W\ and a first order W2 , see Section 4.7.

R e m a rk  4.6.8 The reduced order solution, to either the sensitivity improvement or 

the direct H°° problems, is parameterized by q := —F^L, where the outer factor, F7, 

has the same order as W 2 and the inner factor, L, has order one less than the order 

o fW i.

In other words, while for a single spike W i, L is only first order, L would be third order 

for a  two spike formulation. In this chapter we only consider the simple, minimum 

order, weights defined by (4.42).

4.7 Numerical Examples

In this section we will look at some numerical examples illustrating the above design 

techniques. We will focus our attention on the second step (the repetitive design), 

since the first step (approximate inversion) is a relatively simple and fairly well un­

derstood rational filter design problem. For a given robustness requirement we will 

look at the specific weighting functions that provide classical repetitive action, i.e. 

Ey «  1, see Remark 4.3.10 in Subsection 4.3.3.

Consider the solution of the two block problem of Theorem 4.2.1. The corre­

sponding q(3) gives the solution to the sensitivity improvement (cascade repetitive)
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Figure 21: Bode magnitude plots of Wi and W2.

problem, see Definition 4.3.4 in Subsection 4.3.1, and C(s) is the solution to the direct 

H°° optimal repetitive control problem, see Definition 4.4.1. The two problems are 

completely equivalent, see Remark 4.4.1, in that the sensitivity improvement term, 

S  := 1 — m pm q , is precisely the sensitivity function for the direct problem. Thus 

the achievable performance of the two problems may be investigated simultaneously, 

with Wi and W2 replaced by W\ and W2 in Theorem 4.2.1.

Let the fundamental frequency of the periodic signal, to be tracked and/or re­

jected, be u>0 = .5“  =*■ m(s) =  e~4irt. Let the “key” harmonic be the sixth har­

monic. Finally, let the high frequency robustness requirement be that we must have 

10dB  of robustness by around 100— . We now select the parameters of the generic

Performance Weight

X l - i _____________■ ■
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weighting functions, defined by (4.42), to satisfy these design requirements. Since 

the key harmonic is the sixth harmonic, we have uip = 6io0 =  3 ^ .  We find that 

£n =  .005 adequately isolates the phase to the sixth harmonic. Setting Q  =  .000005 

gives a  spike height at u p of 2 0 1og((n/Ci) =  60d 5 , which is sufficient to obtain 

controllers with repetitive action. This completes the selection of the performance 

weight Wi, see Figure 21 . Now for the robustness weight, we find that select­

ing 02 =  10.5 and 62 =  43 gives a high frequency to low frequency gain ratio of 

about 12dB, see Figure 21, and reaches the high frequency level by lOO^f. Letting 

K 2 — 40 gives \W2 (ju>p)\ «  10.13366, which approximately determines 7 . The reason 

that \W2 (jwp)\ approximately determines 7 , is that \Wi(ju)p)\ — 1 0 0 0 , which implies 

that |5(ju;p)| ps 0, which in turn implies that |T(ju;p)| «  1 . Thus, at u  =  u?p, the 

performance is, almost solely, determined by |W2(jwp)|. Since this point is the “most 

challenging” point, the performance achievable at this point determines the overall 

optimal performance, 7 . The resulting weighting functions are

f7> / \ S2 +  .03a +  9 j  f J > / \  .in5 +  10-5 I a An\W i(s) =  —----- ——--t-------   and W2(s) =  40-------— . (4.47)
K i s2 + .00003s + 9  w  a + 4 3  v 1

For simplicity we will consider plants with only one right half plane (R H P )  zero. 

Let zp be the lone R H P  zero of P(s), giving

m p(s) = -— —, where 0 <  zp 6  1R. (4.48)
S  +  Zp

The “optimal performance” measure, 7 , turns out to be essentially independent of zp, 

where the quotation marks are to emphasize that the optimality is with respect to 

the solution of Theorem 4.2.1 rather than the underlying repetitive control problems,
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Figure 22: Localized non-constant behavior of Ey(ju>) near ujp =  3 ^ .

see Remark 4.6.4. In particular, the effects of m p on 7  are not seen in the first 

seven significant digits. Thus the seven significant digit approximation to 7  given 

by 7  «  \W2(joJp)\ «  10.13366, is not effected. The R H P  plant zero has so little 

effect on 7 , because 7  is essentially determined at a  single point, and is very large, 

see Remark 4.6.4. Thus, we have Ey = 1 — 7 -2  «  0.99 «  1, see Remark 4.6.1. A 

detailed blow-up of the highly localized non-constant behavior of E^(jui) is shown in 

Figure 22.

While 7  is not significantly impacted by the R H P  plant zero, zp, the broad band 

repetitive performance is dramatically impacted for certain zero locations. Since 7  is 

effectively independent of mp, so are E^ and Fy. Thus the effect of m p is manifest
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Table 1: The R H P  zero of L, zl , and sign of L(s) vs. the R H P  plant zero, zp.

Zp 0 0.15 0.60 1.50 3.00 6 .0 0 15.0 60.0
ZL 0.3121 0.1613 31.915 7.9708 3.6968 1.9116 0.9315 0.4646

L(s) zr.—a
Zr.+a

zt.—a a—zr.
j+jrr

t—Zl.
»+*»

8—Zr.
s+zr.

a—zt.
a+zr.

a—zr.
_S±Zl__

8—Zf.
a+Zr.

solely through the inner controller parameter L. Recall that since Wi is second order, 

L  is first order. In particular the first order inner controller parameter L  is given by

L(s) =  ± - — — , where 0  <  z i  € IR (4.49)
s + zl

and z i  is the lone R H P  zero of L. Both the sign of L(s) and the R H P  zero, z i ,  vary 

as functions of the R H P  plant zero, zp. The variations of L(s) for various values of 

zp are shown in Table 1 . Note that the sign is ” for zp < io0 = 0.5 and “+ ” for 

zv > ioo =  0.5. The controller parameter L  is not the only thing dramatically impacted 

by R H P  plant zeros. The number of harmonics at which “good” performance is 

obtained is a  very strong function of the R H P  plant zero location, zp.

Recall tha t the sensitivity improvement term, S  =  1—m pmq, of the cascade design 

is precisely the sensitivity function of the direct design, see Remark 4.4.1. Thus the 

performance of both designs can be investigated simultaneously. The performance, as 

measured by attenuation in dB, is shown in Table 2 at the first fifteen harmonics for 

the full order/complexity case, see Figure 18 for cascade and Figure 20 for direct H°° 

optimal repetitive control. Note that for minimum-phase plants (zp =  0), we obtain 

good broad band repetitive control. Indeed, there is strong attenuation at the fifth
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Table 2: Full order/complexity case: Performance, measured in harmonic attenuation
( - 2 0 log |5(ju?ofc)|) & =  1 . . .  15) in dB, and the corresponding R H P  controller zero,
zl, for various R H P  plant zeros, zp.

Zp Harmonics ZL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -0 5 10 15 22 74 24 19 16 14 12 11 10 9 9 .312

.15 -1 5 10 15 22 74 24 19 16 14 12 11 10 9 9 .161
.6 -4 1 5 ■ 10 17 74 18 13 10 8 7 6 5 4 3 31.9
1.5 -5 -4 -0 4 11 74 11 6 4 2 0 -1 -1 -2 -2 7.97
3 -6 -4 -2 2 8 74 9 4 1 -0 -1 -2 -3 -3 -4 3.70
6 -6 -4 -1 3 9 74 11 5 2 1 1 -1 -2 -3 -3 1.91
15 -5 -2 2 7 14 74 15 10 7 5 3 2 1 1 -0 .932
60 -3 2 7 12 19 74 21 15 12 10 9 8 7 6 5 .465

through eighth harmonics and significant attenuation at the third through thirteenth 

harmonics. The performance, like the sign of X, is not significantly effected for zp — 

.15 <  .5 =  u?o- However, as the R H P  plant zero increases past the first harmonic, 

the “performance region” starts to shrink, reaching a  worst case at zp =  3 =  wp (the 

sixth harmonic). The worst case performance region is very narrow, with significant 

attenuation at only the sixth harmonic. Clearly, such performance can hardly be 

called repetitive. As zp is increased further we slowly begin to recover repetitive 

action. Finally, at zp =  60 =  20u>p we have recovered most of the minimum phase 

performance. However, while at zp =  0.15 =  u>p/20 we have no significant performance 

degradation, at zp =  60 =  20u;p there is noticeable performance degradation.

The Bode magnitude plot of S  is shown in Figure 23. Note that while all of the 

spikes (notches) appear to line up pretty well with the harmonics, the downward
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spikes in the plot are considerably deeper than that predicted by the actual harmonic 

performance shown in Table 2. The only exception to this is the sixth harmonic, at 

which the spike is perfectly centered. The “focus” achieved at the sixth harmonic 

is a direct result of the spike in the performance weighting function, Wx. This phe­

nomenon also illustrates a fundamental question in repetitive control: how to get 

the spikes to line up well at all of the important harmonics? There is no simple or 

uniformly applicable answer to this question, i.e. it cannot really be done. There 

are some approaches which have had some success in improving the situation which 

consist of breaking up the delay term, m(s), into components whose product is m(s), 

see e.g. [84]. The idea behind these methods is to try to improve the phase matching 

at the harmonics. The critical role of phase matching in achieving good repetitive 

performance (lining up the spikes at the harmonics), is exactly what makes repetitive 

control so difficult for non-minimum phase plants.

The problem with non-minimum phase plants is best illustrated by looking at 

the worst case example, zp =  3(= u;p), see Table 2. It is quite clear from the data 

in the table that there has been a dramatic decrease in actual performance. It can
a

be seen from looking at the plot of S{ju )  =  1 — m p(ju)m (ju))q(ju), for zp =  3, 

see Figure 24, that this decrease is due to an increase in the error in the location of 

the spikes (again with exception of the sixth harmonic), rather than a change in the 

depth of the notches. In fact, this time the deviations in the spike locations from 

the harmonics can be easily seen with the naked eye. The spectrum is centered at 

the sixth harmonic, wp =  3rad/sec, and all of the other spikes are closer to the sixth
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Figure 23: Bode magnitude plot of S ( ju )  =  1 — m(jaj)q(ju)), i.e. m p = 1 (zp =  0).

-10

-20

8-30

-40

-50

-60

-70

-80.
Frequency in Radians per Second

A
Figure 24: Worst case (zp = 3) Bode magnitude plot of S.
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Figure 25: Bode plot of [Ti(ju») | =  |9 (jw)|.

harmonic than they should be. Note that there is also an extra downward spike prior 

to the first harmonic th a t appears in both of the performance plots. This extra spike 

is of little practical interest and causes no harm.

Robustness must be addressed separately for cascade and direct designs. While 

the complementary sensitivity for the direct design is given by T  := m pmq, the overall 

complementary sensitivity of the cascade design is given by T  = Tn +  SnT , see (4.24). 

Thus, the overall robustness of the two designs will be very similar if qn(s) is “small” 

before q(s) gets “small” . However, at low frequencies, where |T(j‘u;)| «  1 , T  exhibits 

wild oscillations due to  the scaling of T  by the nominal repetitive sensitivity function 

Sn :=  1 — m pmqn. The robustness of the direct design, for the minimum phase case, 

is shown in Figure 25. The robustness is exactly what one would expect from looking 

at the Bode magnitude plot of the robustness weight, see Figure 21, i.e. roughly
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a scaled version of W f 1. Note that |T(ja>)| := \mp(ju)m(ju})q(ju})\ = \q(ju)\, thus 

this plot is valid for all zp.

In order to more carefully examine the overall robustness of the sensitivity im­

provement (cascade repetitive) design, we must specify a particular nominal design, 

qn(s). Consider the common fifth order low pass filter formula

,n<S) =  ( £  +  1 ) ( §  +  2 cos .2 ^  +  ! ) ( §  +  2 cos +  1 ) ' (4'50)

To make qn(s) “compatible” with the current design formulation, i.e. so that the 

overall design will meet our robustness requirement, let u c =  107T. The corresponding 

Bode plot is shown in Figure 26, while the bode magnitude plot of the overall comple­

mentary sensitivity function for the cascade design is shown in Figure 27. Notice that 

the —10dB  point has shifted up from about 80 for the nominal design to about 

1 2 0 ~  for the cascade design. This trading of high frequency robustness for improved 

performance is characteristic of the cascade design process. However, in this case we 

see a dramatic improvement in performance (at least when m p(s) doesn’t cause too 

much trouble) with only a slight decrease in robustness as measured by the 10dB  

attenuation frequency.

We now turn our attention to the problem of obtaining reduced order/complexity 

approximations to the controller parameters, E-,(s), F^(s), and L(s). As we saw 

above, E^(s) can be well approximated by -1 ,  except in a highly localized area 

around u>p =  3 ^ f . Ey(s) is anything but constant in this highly localized region, 

see Figure 22. This might lead one to (correctly) conclude that the performance at 

the sixth harmonic would be severely effected by setting E^(s) =  — 1. The resulting
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Table 3: Full order F7 with constant £ 7 «  — 1: Performance, measured in harmonic
attenuation (—20log|£(jwo&)|, k =  1. . . 15)  in dB, and the corresponding RHP
controller zero, zl, for various RHP  plant zeros, zp.

Zp Harmonics ZL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -0 5 10 15 22 -7 24 19 16 14 12 11 10 9 9 .312

.15 -1 5 10 15 22 -7 24 19 16 14 12 11 10 9 9 .161
.6 -4 1 5 10 17 -7 19 13 10 8 7 6 5 4 3 31.9

1.5 -5 -3 -0 4 10 -6 12 7 4 2 0 -1 -1 -2 -2 7.97
3 -6 -4 -2 2 8 -6 10 4 1 -0 -1 -2 -3 -3 -4 3.70
6 -6 -4 -1 3 9 -6 11 5 3 1 -1 -1 -2 -3 -3 1.91
15 -5 -2 2 7 14 -6 15 10 7 5 3 2 1 1 0 .932
60 -3 2 7 12 19 -7 21 15 12 10 9 8 7 6 5 .465

performance, for Ey(s) ~  —1, is shown in Table 3. Recall, see Remark 4.3.8, that for 

E~f(s) =  — 1 , we have q = q =► S  — $  and the simplified cascade repetitive structure 

of Figure 19, where q :=  —F~,L. By comparing the data in this table with the data 

for the full order case shown in Table 2 it is clear that there is little effect at the other 

harmonics, but that the performance of the sixth harmonic has been destroyed. The 

good news is that the performance of the sixth harmonic can actually be restored, 

and then some, by making the appropriate cancellations in Ey(s).

Recall that there are structural cancellations that occur in forming the product 

£?7 (s)F7 (s), see Subsection 4.3.2. Thus, it is not surprising that making a reduced 

order approximation to E ^ s ) ,  without making the corresponding reductions in F7 (s), 

would lead to localized errors. What is somewhat surprising is that when the reduc­

tions in F7 (s) are made, the performance is actually improved at the sixth harmonic
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(and is preserved elsewhere), see Table 4. Recall that 7 W2-1, see Remark 4.6.2 in 

Subsection 4.3.3. While this formula could be used directly to obtain a  reduced order 

approximation for a direct approximation of the full order F7 was used instead. 

The direct approximation was obtained by extracting the pole and zero of F^(s) that 

were not near u p, and keeping i^ (0 ), i.e. the DC gain, constant. In particular the 

reduced order approximation used in Table 4 is

w * 0-2545^ ® -  <4-51>

Since the value of 7 , to seven significant digits, is the same for all zp, see Remark 4.6.4, 

the approximation (4.51) is very similar to what one would obtain from the approxi­

mation formula. Specifically, the formula gives

F7(s) «  7 { ^ 2(s ) } - 1 »  0 . 2 5 3 3 ^ ± ^ :  (4.52)

The two approximations give essentially identical performance everywhere except at 

the sixth harmonic. At the sixth harmonic, u p =  3 ^ ,  the approximation (4.52), 

using the formula, gives only 58dB  of attenuation. Clearly, the approximation used 

constitutes the better design. However, it seems likely that the approximation (4.52), 

using the formula, is more accurate, where by more accurate we mean that it cor­

responds more closely to the “optimal” solution of Theorem 4.2.1. That is, since 

7  «  10.13366 and 20 log |W/i(juj|p)| =  60d2?, the resulting attenuation

at L)p should be just a  little less than 60dB. Thus, it appears that the solution we 

obtained from the Theorem 4.2.1 suffers from minor numerical errors and is “subop- 

timal” in the sense that the performance is not really flat, but actually has a  rather
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Table 4: Reduced order F7 with constant «  —1: Performance, measured in
harmonic attenuation (—20 log |i9(ju>ofc)|, k =  1 . . .  15) in dB, and the corresponding
R H P  controller zero, zl, for various R H P  plant zeros, zp.

Zp Harmonics z l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 -0 5 10 15 2 2 103 24 19 16 14 12 11 10 9 9 .312

.15 -1 5 10 15 2 2 103 24 19 16 14 12 11 10 9 9 .161
.6 -4 1 5 10 17 103 19 13 10 8 7 6 5 4 3 31.9
1.5 -5 -3 -0 4 11 103 12 7 4 2 0 -1 -1 -2 -2 7.97
3 -6 -4 -2 2 8 103 10 4 1 -0 -1 -2 -3 -3 -4 3.70
6 -6 -4 -1 3 9 103 11 5 2 1 1 -1 -2 -3 -3 1.91
15 -5 -2 2 7 14 103 15 10 7 5 3 2 1 1 0 .932
60 -3 2 7 12 19 103 21 15 12 10 9 8 7 6 5 .465

significant highly localized spike at u)p. However, this is a “happy” suboptimality in 

that the performance is actually better than it “should” have been.

Thus the final designs, using the constant approximation E y «  — 1 and the re­

duced (first) order approximation (4.51) for F7, have a second order q as the only 

rational component (except for m p, if the plant in non-minimum phase). The result­

ing cascade repetitive control design has the simplified structure shown in Figure 19. 

The direct H 00 optimal repetitive control design has the simple repetitive structure 

shown in Figure 20, where the F (s )” block has been eliminated by the approxi­

mation F 7 «  — 1. In Table 5 we give the performance for the minimum phase case 

for both the direct and cascade designs. The direct design has only a single delay 

element, m (s), and a single second order rational element, q(s). The cascade design 

uses the nominal repetitive design given by q„(s) as defined by (4.50). Thus the
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Table 5: Final reducedorder/complexity designs: Performance, measured in harmonic
attenuation (—20 log |5(j(4)A;)|, k — 1. . .  15) in dB, minimum phase case, zp =  0.

Harmonics
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Direct -0 5 10 15 22 103 24 19 16 14 12 11 10 9 9
Cascade 42 41 43 45 50 130 49 43 39 36 33 32 30 29 27

overall cascade repetitive controller has two delay elements, m(s), and three rational 

elements, qn(s) twice and q(s), giving a total order of twelve. However, if the add-on 

nature of the controller structure is not required, e.g. if q„(s) is not a pre-existing 

design, then the roles of q„(s) and q(s) can be reversed, resulting in a total controller 

order of only nine.

The performance of the cascade design is truly outstanding. However, while the 

direct design provides fairly good broad band repetitive action (i.e. good attenuation 

at several harmonics), it does not provide good performance at the fundamental 

frequency, u>o- Thus, this particular direct design would be unacceptable for any 

practical application. There axe three different ways in which the performance of 

the direct design at Wo could be improved. First, one could simply move the “key” 

harmonic, u p, closer to u>0, e.g. u p = 3u;o =  1 .5 ^ .  Second, a higher order robustness 

weight could be used, see Remark 4.6.7. Finally, a higher order performance weight 

could be used with one spike at, or near, the fundamental frequency and another at 

a higher frequency.
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4.8 Conclusions

In this chapter we have seen that the repetitive performance with robust stability 

control design problem can be reduced to the solution of two, lightly coupled, design 

problems: a finite dimensional rational design problem, which stabilizes and approx­

imately inverts the plant, and an infinite dimensional two-block H°° optimal control 

problem which provides repetitive performance with robust stability. The solution of 

the resulting infinite dimensional two-block H°° optimal control problem was shown 

to have two interpretations: one as the solution to a sensitivity improvement formula­

tion, which results in a  simple cascade repetitive structure, and the other as a direct 

H°° optimal repetitive control formulation.

The general structure of the two degree of freedom controller formulation is shown 

in Figure 15. The initial stabilizing controller, d(s), represents the first degree of free­

dom and “performance” controller, C(s) =  6(s)a(s), represents the second degree of 

freedom. The compensator, 6(s), approximately inverts the plant, while the repeti­

tive controller block, a(s), provides the repetitive action in a robustly stable manner. 

The design of d(s) and b(s) constitutes the finite dimensional (or non-repetitive) por­

tion of the design and is not the subject of this chapter. However, the interaction 

with the repetitive design is quantified in Lemma 4.1.1 and related design issues axe 

discussed in Section 4.5. The repetitive controller, a(s), is designed using the equiv­

alent system of Figure 16. The two figures are related by a(s) = : m (s)C (s) and 

m p(s) = b(s)P(s) = : 6(s)P0(s)mp(s), where m (s ) :— e"*r  is the pure delay associated 

with repetitive control and P0(s)m p(s) is an inner-outer factorization of the stabilized
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plant, P(s). Note that the equivalent system of Figure 16 assumes perfect inversion 

of the outer part, P0(s) of the plant. The effects of imperfect inversion are addressed 

in Lemma 4.1.1 and Lemma 4.1.2.

The sensitivity improvement problem is given by Definition 4.3.3. The associated 

simple cascade repetitive controller structure is shown in Figure 19. The choice of 

weighting functions that yield this simple cascade repetitive structure is discussed in 

Section 4.6. The direct H°° optimal repetitive control problem is given by Defini­

tion 4.4.1. The associated repetitive controller structure is shown in Figure 20. Note 

that the same choice of weighting functions that yield the simple cascade structure 

of Figure 19 leads to the elimination of the E (s)n block (under the approximation 

l&y «  —1 ) in the direct H°° repetitive controller of Figure 20. The solutions of the two 

problems are equivalent in that the improvement in sensitivity achieved in the cascade 

design is exactly the same as the sensitivity of the direct design, see Remark 4.4.1. 

The solution of both problems is obtained from Theorem 4.2.1, which is a specialized 

version of a much more general result due to Toker and Ozbay [95]. For properly se­

lected weighting functions, the solution of both problems is in terms of the unity-low 

pass classical repetitive controller parameter, q :=  —Fy(s)L(s), where L is as defined 

in Theorem 4.2.1 and Fy is a  reduced order approximation, see Remark 4.6.2. Recall 

that under the approximation Ey —1, see Remark 4.3.8, the sensitivity (improve­

ment, for the cascade design) is given by 8(s) :=  1 — m p(s)m(s)q(s), which has a 

classical repetitive structure. While Theorem 4.2.1 does not ensure the stability of 

L(s), the above choice of weights does, see Remark 4.4.2. Thus, q € H°°, which
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ensures stability of the closed loop system, see Remark 4.3.9.

A very interesting feature of the repetitive controller parameter, q, is that it is 

always non-minimum phase. This is a novel feature of repetitive controllers resulting 

from the two-block H°° formulation of this chapter. The natural way that the non­

minimum phase structure of q arises from the H°° optimal formulation, suggests 

that non-minimum phase repetitive controller parameters may, in some sense, be 

“more optimal” for achieving robustly stable repetitive controllers. This possibility 

has obvious implications for “classical” repetitive controller design. Furthermore, 

the resulting repetitive controller structure has another novel feature (whenever the 

plant is non-minimum phase) via the inclusion of m p(s) in the feedback path of the 

“repetitive part”, see Figure 20. Once again, the natural way in which this arises has 

possible implications for “classical” repetitive controller design. Finally, the simple 

cascade repetitive controller structure is a novel structure that can be thought of as a 

means of robustly cascading two repetitive controller designs irrespective of how they 

were obtained, see Remark 4.3.11.

The properties of designs using these procedures are explored in Section 4.7. The 

sensitivity (improvement, for the cascade case), 5  (=  §  under «  - 1), of the two- 

block H°° solution is explored for first order mp(s). The performance is investigated 

for various locations of the single right half plane (RH P) plant zero. As expected, 

see Remark 4.3.3, the existence of R H P  zeros can significantly reduce achievable per­

formance, and the performance is most severely effected when the phase of m p(ju;) 

varies the most over the performance region. In particular, for a simple real R H P
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zero this occurs when the zero, zp, equals the “key” harmonic (center of the perfor­

mance region), u>p, see Table 4. The performance of the direct design (improvement 

of the cascade design) and the overall cascade performance, using a fifth order nom­

inal repetitive design (4.50), are shown in Table 5. While the direct design exhibits 

unacceptable performance at the fundamental frequency (first harmonic), ojq, this 

is because the weights were really selected for the sensitivity improvement (cascade 

repetitive) design. The performance of the cascade repetitive design is excellent and 

indicates the power of the repetitive structure and the utility of the two-block H 00 

approach. Perhaps the most significant point about the direct design is that it proves 

that H°° optimal repetitive control formulations using rational weights will yield 

controllers providing “classical repetitive action” (see Remark 4.3.10), for properly 

selected weighting functions. This provides an indirect proof of concept for the robust 

performance formulation of Chapter III.
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CHAPTER V

Sampled-data Repetitive Control

In this chapter we propose a natural definition for sampled-data repetitive control as 

satisfying a  continuous-time tracking requirement and having a discrete-time repeti­

tive structure. We formulate an H°° optimal sampled-data problem, which imposes 

the continuous-time tracking requirement, and outline a procedure for obtaining con­

trollers with a discrete-time repetitive structure.

5.1 Approach to the Sampled-data Problem

We will consider sampled-data control design problems of the form shown in Figure 28, 

where any required sampling pre-filters have been included in the generalized plant, 

G. Figure 28 has the structure of the “standard problem”, see e.g. [24], where the 

performance/robustness of the system is characterized by the transfer function TZVJ.

R e m a rk  5.1.1 The extension o f standard problem to sampled-data control, see e.g. 

[5, 46]) can be thought o f as control design using time-varying continuous-time con­

trollers o f the special form  H TC Sri where C is a discrete-time controller.

We assume ideal sampling, fixed zero-order hold, synchronized sample and hold 

functions operating at the same rate, and zero computational delay. This common

104
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Figure 28: Basic form of the sampled-data problem.

approach, see e.g. [105, 82, 25, 19], allows the use of the lifting technique based 

approach of [5, 104, 4].

R e m a rk  5.1.2 While the computational delay is never actually zero fo r  any real sys­

tem, the approximation may be reasonable fo r  low order (e.g. repetitive) controllers.

The other main approach, a  delay of one sample period, is addressed in [46]. Their 

approach is also based on the lifting technique, but has several other significant differ­

ences in addition to the inclusion of a computational delay. The ultimate goal of the 

lifting technique is to find an “equivalent” finite dimensional discrete-time system that 

is norm preserving. Then, the equivalent discrete-time system can be used for norm 

based discrete-time controller synthesis using the corresponding norm. Obviously, in 

this dissertation we are concerned with equivalence in terms of the infinity-norm.

5.2 The Lifting Technique

The purpose of the lifting technique is to obtain a  discrete-time system that represents 

a sampled continuous-time system without any loss of information. The basic idea is 

quite simple and is defined in terms of action on signals. Define a lifting operator,
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WT, that piecewise lifts continuous-time signals to discrete-time sequences of time 

limited functions. The action of WT is illustrated in Figure 29 and is defined by

Wr : I£[0,oo) -»> lLP\o,r)\ f i  = WTf ,  fi{t) =  f ( r i  +  t), 0 <  i  < r, (5.1)

where the function spaces L*[0 ,oo) and Ilp[o,t ] are defined in Appendix A. The lifting 

operator can be thought of as a  “generalized sampler” , which instead of sampling 

just a single value of a function, samples the entire history of the function between 

sampling instants. The lifting, Wr , converts time unlimited functions into infinite 

sequences of tim e limited functions. The operator WT is invertible, where the inverse 

operation is defined by

g = W ~xg, g(t) =  gt{t -  W), r i < t <  r(i + 1). (5.2)

When WT is restricted to Xp[0, oo) C Z-p[0, oo), it is an isometry, i.e. W ~XWT is the 

identity operator, and is therefore norm preserving.

R e m a r k  5 .2 .1  The inverse lifting operator, W~*, defined by (5.2) is noncausal. In­

deed, i f  it were defined to be causal, then W ~l WT would be the unit delay operator 

instead o f the identity operator.

The purpose in defining the inverse lifting operator in this way is to use it in 

turn  to  define a lifting of systems. The induced system lifting can be thought of as 

a “similarity transform” of the original system under the lifting operator. The lifted
A

system, G , is given by

G = WrG W ; \  (5.3)



www.manaraa.com

107

x<0

Y-* Lifting

2X 3T

A
Xj(t) x2(0

■4—► t

Ax3(t)

, /  I

Figure 29: Graphical illustration of the lifting process.

R e m a rk  5.2.2 In [46] Kabamba and Hara avoid the use o f the inverse lifting operator 

and obtain a much more complicated characterization of a discrete-time equivalent 

(with respect to the infinity norm) system.

Since Wr is an isometry only when it is restricted to Lp[0 , oo), strictly speaking 

the equivalent system is valid only for Lp-stable G. However, by restricting the 

domain of G (through feedback control) the output can be restricted to Lp[0 ,oo). 

That is, if C  stabilizes G in the hybrid system of Figure 28, then WT is an isometry 

and the lifted system is well defined. For the problem to be well posed we must 

have that the stability of ^{ iirG S r^C )  implies the stability of F (G ,H TC ST), where 

the operator T  is defined by Figure 28. By Theorem 4 of [34], the stability of the 

two systems TiffirG Sr, C) and Jr(G,'HTC ST) is equivalent for all non-pathological 

sampling periods, r ,  for all finite dimensional linear time-invariant (L T I)  generalized 

plants, G.

D efin ition  5.2.1 (pa tho log ica l sam p lin g  p erio d s) Pathological sampling periods 

are those sampling periods for which the continuous-time system has eigenvalues in
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C+ that are multiples o f the sampling frequency or whose imaginary parts differ by a 

multiple o f the sampling frequency.

Thus the control problem for the lifted system is well defined and equivalent to the 

original control problem for all finite dimensional L T I  plants under non-pathological 

sampling.
A A

The “lifted” sample and hold operators, H T and S T, are equivalent to H r and S T 

with the appropriate changes in the range space of H r and the domain of S r . The 

lifted sample and hold operators are defined by

H t : 1RU Lp[0,r]; Uk =  Hr^v. &  Uk(t) =  Uk, 0 < t < r  and (5.4)

ST :L p[ 0 , r ] - l R ’'; yk =  STyk *  yk =  yk(0). (5.5)

R e m a rk  5.2.3 The superscripts are used to keep track of the space in which the 

discrete-time variables live. For example, y denotes a real valued discrete-time vari­

able, while y denotes a function valued discrete-time variable.

A  A

We can now absorb H r and S T into the plant to get the system shown in Figure 30. 

The new plant, G is given by
■ p  «  p *i

A  A

(5.6)
p  A

f  Gn
A A

A A  m
G\2H t

A a  A , where
A

z = G
* AW

S tG2i s tg 22h t . v .
UG =

The mappings of the blocks of G are as follows:

Gn  : l p[0, t] -► U>[0, r], G12 : lm  -  Lp[0, r], 

G2i : //p[0, r] —+ Z]ry, and G22 ; Zjru —► /jy .

(5.7)

(5.8)
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R e m a rk  5.2.4 Since w = WTw and z =  WTz, we have

? {G ,C )  =  WrT {G ,H TC ST) W ^  *  m G ,C ) \ \  = \\r (G ,H TC ST)\\. (5.9)

Thus the control problem for this discrete-time system is equivalent to the control 

problem for the sampled-data system of Figure 28.

Aw

u

Az

Figure 30: The discrete-time lifted problem.

5.3 The Discrete-time Equivalent for the H ° °  Problem

For the details of the above development see [5]. The development in the preceding 

section is completely general in that it is valid for all norms. When the norm is 

the infinity-norm, the equivalent problem G is in turn equivalent to a finite dimen­

sional problem 6 ,  see [5]. The equivalence is with respect to internal stability and 

\\F (G ,n TC ST)\U  <  1 <=> | |^ , C ) | |o o  < 1 . The finite dimensional equivalent system 

is given by:

o D12 
o o )■

(5.10)
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where the real finite dimensional matrices are defined in terms of finite rank operators 

as follows: C2 :=  C2i

/  .  A A f  A A 1 “ •  1 A

A  -.= eJr +  B,D'n  [ / -  A ijD ;,] Ci,

By :=  IS JB
0

, and [ Ci D \ 2 S'Jl 0 T c d \

(5.11)

(5.12)

(5.13)

where $ (t)  := f f  eAads — /0‘ eA^~^ds,

rpm
1 B

Sjg 0  
0  0

Tb :=  Bi
-1

I  — D \xD u B{, and

t ;CD
£  CD 0  

0  0 T c d  : =
C{ 
b \ 2

[c ,  D n  ]

(5.14)

(5.15)

The symbols with hats over them are finite rank infinite dimensional Volterra integral 

operators, see e.g. [63], defined over the interval [0, r] and their kernels are given by:

&i(s) :=  eA T̂ ci(s) :=  C\eAt, di2(s) :=  Ci$l{s)B2 +  D u  and

d n (M ) := CieA^ l { t  -  s)B i + D n 8(t -  s). (5.16)

R e m a rk  5.3.1 The action o f an operator, H , with kernel h (t,s ) or h(s) is given by 

H f( t)  =  f j  h (t,s )f(s )d s  or H f( t)  = / 0T h (s)f(s )d s , respectively.

Ignoring the dimension of the vectors (matrices) in the domains and ranges, the 

elements are mapped as follows: B i : i 2[0 , r] —► IR, C\ : 1R —► 1R, D u : £ 2[0 , r ] -  

L 2[0, r ,]  and D i2 :TR. —► 1R.
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R e m a rk  5.3.2 The above characterization is in terms infinite dimensional, finite 

rank, operators. In order for the formulation to be usable, the operators must be 

explicitly evaluated.

This was done in [5] for the special case where D u  and D u  are identically equal to 

zero and the pairs (A, B f)  and (A, Ci) are controllable and observable respectively.

5.4 Sampled-Data Problem Formulation

In this section we define a notion of sampled-data repetitive control and formulate a 

S IS O  H°° optimal sampled-data repetitive control problem. In order to make use 

of the above development, we must pose the problem in the form of Figure 28. For 

maximum generality we consider two degree of freedom controllers. We formulate a 

tracking problem, since there is no advantage to the two degree of freedom controller 

for the disturbance rejection problem [102]. We pose a nominal performance problem 

with a robust stability requirement. The formulation also provides an unspecified 

degree of robustness with respect to the tracking performance. The resulting M I  M O  

H°° problem has a very similar structure to the robust performance problem posed 

in Chapter III for continuous time H°° optimal repetitive control design.

5.4.1 Sampled-Data Repetitive Control

We propose the following formal definition for sampled-data repetitive controllers, 

which corresponds to the purposes behind both repetitive control and sampled-data 

system theory.
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D efin ition  5.4.1 (sam pled -data  rep e titiv e  control) A sampled-data repetitive con­

troller is a digital controller having a digital repetitive structure that satisfies a con­

tinuous time performance (tracking/disturbance rejection) requirement

This definition is reasonable in that repetitive control is concerned with handling 

a  large number of harmonics with relatively low order (easily implemented) con­

trollers and sampled-data controllers are digital controllers designed directly to sat­

isfy continuous-time requirements. Previous works related to sampled-data repetitive 

control do not satisfy Definition 5.4.1. In [40] Hara, et al. consider a digital repetitive 

control problem where the reference signal is taken to be digital. The drawback of 

this formulation is that a continuous system cannot precisely track a discrete signal, 

even if the desired performance actually is of this form. They attem pt to suppress the 

inevitable intersample ripples through the use of a periodic hold function. In [55] the 

authors take another indirect approach to sampled-data repetitive control that does 

not satisfy Definition 5.4.1. They approximate the continuous-time requirements at 

a sampling rate that is an integer multiple of the actual sampling rate, which does 

not satisfy the first part of Definition 5.4.1. Furthermore, no mention is made of 

attempting to recover a digital repetitive structure. Recall that the general structure 

of digital repetitive controllers is

( 6 - 1 7 )

where q(z) and d(z) are rational functions and the integer L is at least twice the ratio 

of the sampling frequency, /„ =  1/ r ,  to the fundamental frequency, / 0, of the the 

periodic input.
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R e m a rk  5.4.1 The sampling rate, / , ,  must be chosen to be an integer multiple o f 

the fundamental frequency, fo, o f the reference/disturbance signal.

If this condition is not satisfied, then it is not possible for a controller, with a  “low or­

der” digital repetitive structure, to satisfy the continuous-time repetitive performance 

requirement.

R e m a rk  5.4.2 (o rd e r  o f d ig ita l re p e titiv e  co n tro lle rs) Strictly speaking, the or­

der o f digital repetitive controllers is always at least twice the number of harmonics 

of interest, due to the term z~L. However, as a practical matter, it is the order o f the 

two rational functions, q(z) and d(z), that determine the computation time (ease of 

implementation).

Indeed, if q(z) =  d(z) =  1, then only one addition operation is required to implement 

the controller defined by (5.17).

5.4.2 H ° °  Optimal Tracking Problem with Robust Stability

The block diagram for the tracking performance problem with robust stability is 

shown in Figure 31. The signals are labeled in accordance with the general structure 

shown in Figure 28. The performance weight, W \, represents the frequency distribu­

tion of the signal to be tracked. The robustness weight, represents the additive 

uncertainty in the plant P. The sampling pre-filters, F\ and Ft, are included to en­

sure that the transfer function from any exogenous input to any sampled output is 

low pass, which is necessary for the sampling process to be well defined. The H°°
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tracking problem is to minimize the worst case tracking error, zj, due to two-norm 

bounded input signals wi.

R e m a rk  5 .4 .3  In the pure tracking problem a fictitious weight would have to be 

placed on the control signal, u, to prevent the resulting “optimal” controller from  

being improper.

In our formulation the stability robustness requirement places a weight on the con­

troller output,u, and takes care of this problem. The robust stability problem is to 

ensure tha t the two-norm of the robustness output, Z2 (t), satisfies |j^2([2 <  1 > for all 

inputs, W2 (t), such that H102II2 <  1- Thus, {Tzw)\\ represents the tracking problem 

and (Tg w ) 22 represents the robust stability problem. The off diagonal terms of TZVJ 

represent an unspecified robust tracking requirement. Thus, solving for | | r zu,||oo < 1 

minimizes the tracking error while guaranteeing robust stability and an unspecified 

degree of robustness with respect to the tracking requirement.

Figure 31: Block diagram of the problem definition.

By inspection of Figure 31, it can be seen that it has the same form as Figure 28 

with the generalized plant, G , given by

G = G u G\2 , where
z

=  G
w

G 21 G22
7

. y . u (5.18)



www.manaraa.com

115

and the entries of G are given by

■ Wi 1 ' 
0  0

i C\2 =

1 
J 

• 
*

, C?21 =
' WiFi 0 '

0  f 2 , g 22 = 0
f 2p

. (5.19)

Clearly, the presence of a low pass F2 is necessary. The necessity of F\ depends on 

the form of W\. If W\ is taken to be biproper, then F\ must be low pass also. The 

continuous-time performance/robustness requirements are characterized by the closed 

loop transfer function Tzw. For the problem defined by Figure 31, we have 

1
T =-Lzw —

1 -  p h c 2s f 2
Wi{ 1 -  PH (C2SF 2 -  C iSFt)) 1

W M iH C iS F i)  W2{HC2SF 2)
(5.20)

R em ark  5.4.4 The diagonal terms are analogous to two of the three terms in the 

continuous-time robust performance problem formulation given in Chapter III, see 

Definition S. 1.1.

Indeed, ignoring the samplers, holds, and pre-filters and replacing C2 by C2 and 

C2 — Ci by C2 the diagonal terms become precisely the first and third entries in 

the vector H°° problem of Chapter III, see Definition 3.1.1. These diagonal terms 

represent the nominal tracking and robust stability, respectively. The off diagonal 

terms represent additional constraints in the form of robust tracking requirements. 

However, no specific level of robustness with respect to the tracking requirement is 

guaranteed.

5.5 Discrete-Time Equivalent Problem

For (5.10) to be useful in design, explicit formulas for the associated matrices must be 

derived in terms of the continuous-time system and performance weights. This was
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done in [5] for the special case where D u  and D \i are identically equal to zero and 

the pairs {A ,B \)  and (A, C\) are controllable and observable respectively. None of 

these assumptions hold for our sampled-data repetitive control formulation, defined 

by Figure 31.

R e m a rk  5.5.1 The characterization of the discrete-time equivalent system given in 

[46] is completely general, however the computational complexity is prohibitive.

Therefore, in this section we directly extend the results of Bamieh and Pearson [5] 

to the general case. The formulas given in [5] are a  special case of these formulas 

and can be recovered by substituting in D u  =  0 and D \ 2  =  0. The controllability 

and observability assumptions are technical conditions related to uniqueness of the 

solution for the special case considered there.

5.5.1 Explicit formulas for the general case

In this section we give explicit formulas for constructing the discrete-time equivalent 

system from the continuous-time problem data for the general case. The two opera-

[ a  *  1  —  1  P *  a  1  — 1

I  — D n D JJ  and I  -  D \XD\A  play very prominent roles in these formulas. 

The kernels of these two operators are derived in this section. The derivations are 

analogous to, but considerably more involved than, those in [5] for the special case 

discussed above. Theorem 5.5.1 summarizes the required formulas and gives a suffi­

cient condition for their validity, which is a necessary condition for the solvability of 

the associated H°° control problem. The proof of Theorem 1 appears in Appendix D.

The kernels of these operators are most easily derived in the time domain using
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A

differential equation representations. Let h(t) :=  Dn u(t), 0 <  t <  r ,  then we have 

ii(<) =  Axx{t) + B iu(t), h(i) — C\Xx(t) +  ^i(O) =  0. (5.21)

A

The adjoint operator, D \x, 0 <  t <  r ,  has the differential equation representation 

x 2{t) =  - A mx 2{t) -  C{h{t), f ( t )  = B [x2{t) +  D mn h(t), x 2( t ) =  0, (5.22)

where /( f )  :=  Z^Z^f). Thus, y(t) :=  [/ — D ^D u ]  «(t), 0 <  t <  r , is given by

= 0,

. (5.23)

X 2( t ) ' -A * -C jC x  ' x 2(t)
+

■ CiDx 1 ' u(t), x 2{t )

£ i ( t ) 0 A Xl(t) . ~ B 1 x i ( 0 )

x 2(t)
X i { t )

y(t) = [ B ; D*n Ci ] x{t) + (I  -  D*n Du )u (t) , x(t) :=

a  r  a  a  n  - » 1  a

The inverse operator, R  := 1/ — D ^D iA  , exists whenever ||Z?u||oo <  1, which is a 

necessary condition for the existence of a solution to the H°° control problem. When
A

the inverse operator, R, exists it is the solution to the differential equation

x(t)  =  A Rx ( t) +  B Ry{t), u(t) =  CRx(t)  +  DRy (t), x 2( t ) =  0, xi(0) =  0, (5.24)

where

A r  :=

B R :=  

CR :=

-(A + B i Dr D I W  -(C iC x  +  C lD n DRD'n Cx) 
B x D r B t  ( A  +  B x D r D I x C x )

<%Dn
-B x Dr ,

- D R B i DixCx , and DR := [/ -  D J,Dxx] - l

(5.25)

(5.26)

(5.27)

Let T(t) := eARt. If r n ( r )  is invertible the solution is unique, otherwise any pseudo 

inverse will give a  valid solution. We use x(t) =  eAR^~to^x(to) +  / / 0 eAR^~â B Ry(s)ds
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(the variation of constants formula) to solve for the input, u(t), as a  function of the 

output, j/(2). Specifically, we get

, r t >

+ f Q eAR^~a)B Ry(3)ds^ + DRy{t). (5.28) 

So, by inspection, we have that the kernel r(f ,s ) , of the operator R, is given by

r(f ,s )  =  CR | —( r r i(r )  o 
0 0

eAR(T -)BR +  _  a) |

+DR6(t -  s). (5.29)

I - D n D l ,
- l

, is quite similarThe derivation of the other inverse operator, Q := 

and only the pertinent definitions will be given. The action of the operator Q on a
A

function f{ t)  is given by Q f{t)  =  f j  q ( t,s ) f(s )d $, where the kernel q(2,s )  is given by

' - 1/
«(*»«) =  C q  | -< Aqt T n V )  0 

0  0
eAq(t- ‘)b q +  e ^ - ^ B q l i t  -  a) j

+DQ6{t -  s), (5.30)

where

- ( A  + B lD!1DQCl y  - C ID qCx
{B \B \ +  B iD ^ D qD u B i ) {A +  B \D ^ D qC i )

C[
B\D*n D q :

(5.31)

(5.32)B q :=

C q :=  - D q D n B ; C i , D q := [/ -  D n D ^ ] '1 , and T (2) :=  e&K  (5.33)

Once again, q(tts) is a valid representation for Q if ||£hi||oo < 1? and it is unique if 

T „ ( r )  is invertible. If T n ( r )  is singular any pseudo inverse will yield a  valid </(f,s).
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R e m a rk  5.5.2 For D n  — 0, we recover the simple case o f [5], i.e. we have

A r = A q = -A *  -C^Cx  
B \B \ A (5.34)

T h e o re m  5.5.1 (d isc re te -tim e  eq u iv a len t, g enera l case) Jjf | | j £>i i | | o o  < 1 (a nec­

essary condition fo r  solvability), then the finite dimensional state space representation 

fo r  the discrete-time equivalent problem (5.10) can be calculated directly from:

A  = T 22( t)  -  T 2i(T)T;i1(T)Ti2(T);

B x = n
-,1 /2  1 
JB , where Tg

B 2 = (# M(r)  -  T 21(r)T{’11( r ) $ 12(r))

Tb  = Tn ( T ) ^ ( T ) i

Bq — ^ ( r )R 2, where

Bq := - C xDqD i2 
B 2 +  B i D^1D qD \2

, and let B q = : [ B q  — B q

6 2 = C2\ and [ d \  £>12 ] =  [ £ 0  ] Tod, where

T m
CD

S en  0 
0  0 Tcd =

C\\ C\2 
C\2 @22

, C\\ := - T [ i '( r ) T 12(T),

Ci2 := - Y u { r )  [ $ n ( r )  $ i2(r)  Bq, and

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

C22 '•= [ B q »§]j*(r) i r ' w  0
0  0 ■}

$ ( r ) - f i ( r ) ^ g  +  t D*12D qD 12; (5.42)

and $ (t)  :=  /  T(s)ds, $(<) :=  f  eAtds , and fl(/) :=  f  $(r)dr. (5.43)
Jo Jo Jo

The proof is long and involved, provides little insight into the resulting formulas, and 

may be omitted without loss of continuity. Appendix D contains a  detailed sketch of 

the proof, which may be of independent interest to researchers in related areas.



www.manaraa.com

120

R e m a rk  5 .5 .3  For D n  — 0 and D u  — 0, we recover precisely the equations in [5].

The computation of the discrete-time equivalent system from the sampled data prob­

lem parameters is quite straight forward.

R e m a rk  5.5.4 The integrals involving the matrix exponentials can, in theory, be 

computed using any symbolic math package such as Maple or Mathematica, however 

fo r  large matrices the computation time/memory requirements may become excessive.

If A  is well conditioned, $ ( r )  can be computed directly from $ ( r )  =  A~l (eAr — I). 

Similarly, if A q is well conditioned, then $ ( r )  and f)(r) can be computed directly 

from 4>(r) =  Ag1(ej4oT — I)  and fl(r)  — — r l ) .

R e m a rk  5.5.5 Numerical evaluation o f matrix exponentials is inherently approxi­

mate, and the approximation error may be quite significant, see [60].

All the rest of the calculations are simple linear algebra, except for the factorizations

* * *
required to calculate B \, C\, and D u. However, subject to the associated potential 

numerical difficulties, B \, 6 \ y and D u  can be calculated using the singular value 

decompositions as indicated by the formulas in Theorem 5.5.1.

R e m a rk  5.5.6 I f  B \ is a vector, then it can be calculated exactly by taking the square 

roots o f the diagonal elements o f T2 i(r )T [] (r ) .

Similarly, if [ D u  ] is a  vector, then it can also be calculated exactly. For more 

on the numerical difficulties associated with use of the singular value decomposition 

see Appendix C.
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R e m a rk  5.5.7 The resulting equivalent discrete-time system is the same order as 

the original continuous-time system, which is a property shared by the more complex 

characterization o f [46].

We have not as yet been able to successfully complete a numerical example verifying 

that the discrete-time equivalent system of Theorem 5.5.1 is indeed equivalent with 

respect to the infinity-norm. In fact, as yet we have not even been able to do such 

an example even for the simple case of [5], nor have the authors. It is not yet clear 

whether this is due to numerical difficulties or a  flaw in the development.

R e m a rk  5 .5 .8  The use o f the noncausal inverse lifting operator, WT-1  (5.2), elimi­

nates from the formulas, for the discrete-time equivalent, all o f the observability and 

controllability grammians (see e.g. [12]) normally associated with problems involving 

delays.

This is a  very nice feature of Bamieh and Pearson’s formulation [5], however it does 

make one wonder whether we have simplified things to an unrealistic extent.

R e m a rk  5.5.9 It is precisely the presence of grammian type, and other similar, inte­

grals involving products o f matrix exponentials that make the discrete-time equivalent 

o f Kabamba and Hara [46] so very difficult to compute.

W ith respect to the sampled-data repetitive control problem, it is irrelevant how 

the discrete-time equivalent system is computed. Thus, the sampled-data repetitive 

control problem solution outlined in this chapter, does not depend on how these issues 

with respect to computation of discrete-time equivalents are ultimately resolved.
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5.6 Singularity of the Discrete-Time Equivalent Problem

Regardless of what method is used to obtain the discrete-time equivalent system, the 

resulting discrete-time equivalent problem will be the “singular problem”, see e.g. 

[87]. This is an inherent property of well posed sampled-data problems, due to the 

requirement for all sampled signals to be low pass. The significance of the singular 

problem is that it cannot be solved by the nice state space methods of [24] for the 

continuous-time case or [44, 8 6 ] for the discrete-time case. There have been several 

attem pts to extend these results to the singular case, see e.g. [85, 78]. None of 

these methods has evolved to  point where their solutions are readily implementable, 

especially for the discrete-time case. The classical frequency domain based approach, 

see e.g. [33], has no added difficulty dealing with the singular problem, but there is 

a  problem with obtaining the required factorizations for the discrete-time case. The 

problem is with the solution of the associated discrete-time algebraic Riccati equation 

(DARE), see [33, 21,48]. Considerable work has been done towards a  solution to the 

required DARE [11,8 8 ], but the only closed form solution is obtained by transforming 

the DARE to an equivalent continuous-time algebraic Riccati equation (CARE) via 

the bilinear transform and then converting the solution back via the inverse transform 

[11]. There is a  relatively new area of control theory with application to the singular 

H°° problem based on linear matrix inequalities (LMI’s), see e.g. [36, 45, 9]. This 

approach does not have any added difficulties for the singular problem, however most 

of the work has been for continuous-time systems. Furthermore, the parameterization 

of all solutions is not as attractive for our purposes as the one in terms of the so called
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“central controller” as provided by [24].

A more direct method for purely H°° problems is the use of the bilinear transform. 

The bilinear transform of a singular problem is, with probability one, a nonsingular 

problem. Thus, the bilinear transformation of the discrete-time equivalent problem 

yields an equivalent continuous time problem, which satisfies the standard assump­

tions [24]. The equivalence is with respect to the infinity norm [37], thus providing 

complete equivalence in this case. There is no loss in design insight, since the true 

design requirements have already been posed in the sampled-data setting. The re­

sulting standard continuous time equivalent problem can be readily solved using the 

state space methods of [24] as implemented in MATLAB’s /z-tools toolbox [3].

5.7 Continuous-time Equivalent System

0
Specifically, we convert the discrete-time equivalent problem, G, to a continuous-time 

equivalent problem, G* =  (A a,B a,C 3,D a), solve for the corresponding continuous­

time controller, K * =  (AaK,B aK , C k, Dk ), and convert the controller to its discrete­

time equivalent, K  =  (A k , B k , Ck , Dk )• The formulas are given by:

A a := a - \ l  + A ) - \ A - l ) ,  (5.44)

B 1 := { I + A y 'B y f i j a ,  (5.45)

Ca := d ( I  +  A ) -1yj2/a,  and (5.46)

D a := D - C ( I  + A)~xB; (5.47)

and

A k  :=  ( I - a A ‘K) - '{ I  + a A'K), (5.48)
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B k  :=  ( I  + A K)B ‘Kyf i / 2 ,  (5.49)

Ck  •= y/2Cj((I +  A k )\Jck/2 , and (5.50)

Dr  :=  DaK +  Ck (I  +  A k )~xB k ', (5.51)

where a  > 0 is the bilinear mapping parameter. It is easily verified that the above

bilinear transformations are inverses of each other. The first one maps from the z- 

domain to the s-domain via s = a~l (z — 1 ) /(z  + 1), such that the unit disk is mapped 

to the left half plane, and the second one maps from the s-domain to the 2-domain 

via z — {1 +  a s ) /( I  — as). For more on state space to state space bilinear transforms 

see [37, 62].

R e m a rk  5.7.1 The resulting discrete-time controller, K  = (A k ,B k ,C k ,D k ), is 

precisely the controller, C — [C\, C2], fo r the sampled-data problem of Figure 31.

5.8 Recovering a Repetitive Controller Structure

The solution provided by MATLAB’s p-tools toolbox is the so called “central con­

troller” , K °, and all controllers satisfying \\T(G*, K*)^oo <  7  are parameterized by

K '  =  M ) :=  I<cn  +  I<CUM (I  -  I<Z2M )~ lK c21, (5.52)

where ||M||oo <  7 . While the continuous-time repetitive performance requirement, 

as represented by the weighting function, W i, may not yield a  central controller with 

a digital repetitive structure, it should be “close” to repetitive. Furthermore, it is 

reasonable to  expect that, for appropriately selected weighting functions, there will 

exist a  minimal order (same order as the central controller) solution that has a digital
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repetitive structure. A large class of minimal order controllers is parameterized by 

all constant matrices M , such that ||Af)|oo < 7 .

R e m a rk  5.8.1 Since all o f the controllers parameterized by (5,52) satisfy the robust­

ness and tracking requirements o f the H°° optimal formulation, we are only concerned 

with how repetitive (easy to implement) the controllers are.

Since there are several free parameters and the problem is highly nonconvex, tradi­

tional search algorithms are not suitable. However, since all solutions are admissible 

(satisfy the continuous-time requirement imposed by the H°° formulation), the new 

search technique known as genetic algorithms is ideally suited to the task.

5.8.1 Genetic algorithms

Genetic algorithms (GA’s) are so named because they are based on concepts arising 

in natural selection, see [42, 38, 83] and references therein for background. GA’s have 

proven to be very effective at finding global, or “near global”, maxima for highly 

nonconvex optimization problems. The basic concept is as follows:

1. Identify the set of free variables (design parameters), which the GA will manip­

ulate as it searches for maxima.

2. Choose an appropriate fitness measure (objective function) such that the fitness 

value is larger for “better” sets of design parameters.

3. Generate an initial population of suitable (admissible) sets of design parameters.
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4. Apply selection (based on fitness) in conjunction with the “crossover” and “mu­

tation” operations, see e.g. [42, 38, 83], to the current population, to construct 

a  new population of admissible sets of parameters (the next generation).

Step (4) is repeated until “satisfactory” results are obtained. If the fitness measure, 

crossover and mutation probabilities, and population size are all appropriately chosen, 

then the algorithm will likely converge to a (hopefully global) maximum. In our case 

we don’t necessarily need to find the global maximum, or even converge; we just want 

to obtain controllers that are “more” repetitive. Obviously, if a generated “candidate” 

set of parameters for the next generation is not admissible, i.e. ||i^||oo > 7 ) then it 

must be either discarded or adjusted (rescaled). GA’s have been used successfully 

to obtain satisfactory solutions to various difficult optimization problems related to 

control systems, see [47, 101, 52, 106] and references therein.

5.8.2 Repetitive structure via GA’s

We propose to use a GA, which is a slight modification of the one used in [54], to 

find controllers A* such that the bilinear transform, A-, of A* has a digital repetitive 

structure. The design parameters are the entries of the constant matrix M . A set 

of parameters (matrix entries) is admissible if HA/floo < 7 . To determine a fitness 

measure that reflects “how repetitive” the corresponding digital controller is, we must 

take a closer look at the structure of digital repetitive controllers. Let d(z) = : Nd/Dd 

and q(z) =: Nq/D q, where Nd,D d,Nq, and Dq are polynomials in z~l . Now, we can
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write

K (z ) —___________________ NdDq   N k  , .
U  1 -  q{z)z~L DdDq -  N qDdz~L ' DK ' ( j

Let the orders of the polynomials be given by m := ord(DdDq), p := ord(NqDd) and

n  :=  ord(Dfc). Define the coefficients a, by Dk  =  ao +  a iz " 1 H f-a„z-n . In general

(and in particular for proper chosen performance weights W \) we have n  =  p + L. 

If K( z)  has a  repetitive structure, then there will be a band of zero coefficients, i.e. 

O j = 0 ,  m + 1 <  i <  L —p — 1. Let the normalized coefficients of interest be given by 

dj :=  a , /a n, j  :=  i — m  — 1 , m - f l  <  i < L —p —1. Define the degree o f repetitiveness 

by r  := L  — m  — p — 2. For a given r , let the fitness function be given by

/ , ( « , « +  , (5.54)

where the parameter 0  > 0  determines the value, /?-1, at which the fitness function 

saturates. Ideally, the GA utilizing the fitness function f r would seek to maximize the 

degree of repetitiveness, r. Choosing f3 to be inversely proportional to r would seem 

a logical choice. The only difficulty lies in choosing a  /?(r) such that the algorithm 

converges to /?(r) -1  for some (hopefully maximal) r. In the absence of such a /3(r), 

the GA can be used for each feasible r  separately using some appropriate constant

f i >0 .

While the fitness function f r(M,  /?) has intuitive appeal, it may be susceptible 

to numerical difficulties, for high order K(z) ,  due to the dependence on very precise 

values of the polynomial coefficients, a,-. An alternative formulation with potentially 

better numerical properties is based on trying to make the controller, K ,  have L
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poles as close as possible to the unit circle. Recall that in the ideal case a digital 

repetitive controller would have L poles on the unit circle. Such a criterion will 

not directly enforce a digital repetitive structure, unless the ideal case is achieved. 

However, there are no numerical problems and it is computationally efficient. Let 

Pi = Xi + jy i, i = 1 , . . . ,  L be the L poles of K s (eigenvalues of A‘K) closest to the 

imaginary (ju )  axis. Denote the normalized poles by pi := x./t/,- +  j  and define the 

fitness function

, (5.55)

where the constant parameter 6 >  0 determines the saturation value for /  just as fi 

did for / r . The relative merits of the two fitness functions, / r (M,/3) and f r(M,6), 

is a topic for further research upon resolution of the problems with calculating a 

discrete-time equivalent system.

5.9 Conclusion

In this chapter we proposed that sampled-data repetitive controllers be defined to 

be those controllers having a digital repetitive structure and satisfying a continuous­

time performance requirement (tracking/disturbance rejection), see Definition 5.4.1. 

We posed a two degree of freedom H 00 optimal sampled-data tracking performance 

with robust stability problem, see Figure 31, directly satisfying the second part of 

Definition 5.4.1. We extended the results of [5], on discrete-time equivalents, to the 

general case required to solve our H 00 problem formulation. We also noted that nu­

merical computation of discrete-time equivalents has not yet been resolved for either
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the approach of [5] or the approach of [46]. Whatever method eventually proves to be 

practically applicable to computing discrete-time equivalents, the resulting equivalent 

problem will be singular. We gave explicit state-space formulas (5.44) through (5.47) 

for converting the resulting singular discrete-time equivalent problem to an equivalent 

continuous-time problem satisfying the standard assumptions. There is no loss in de­

sign insight due to this conversion, since the actual problem has already been posed in 

the sampled-data setting. The resulting standard continuous-time equivalent problem 

can be solved using MATLAB’s fi-tools toolbox [3]. The resulting parameterization 

of all solutions in terms of the central controller can then be exploited to recover a 

digital controller having a repetitive structure. The corresponding digital repetitive 

controller can be calculated from the resulting continuous-time controller using the 

state-space formulas (5.48) through (5.51). We posed the problem of searching the 

parameterization of all solutions for the “most repetitive” solution in terms of genetic 

algorithms. With appropriately selected weighting functions, see Subsection 5.4.1, 

all solutions should correspond to digital controllers having “nearly” repetitive struc­

tures. It is expected that controllers with digital repetitive structure will be readily 

obtained. Numerical investigations await the resolution of the problems with calcu­

lating discrete:time equivalent systems.
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Contributions and Future Directions

This dissertation has made several contributions to repetitive control theory and re­

lated areas, and each contribution has suggested at least one direction for future 

research. These contributions and directions were obtained by applying H°° optimal 

control theory to repetitive controller design. Further contributions and new direc­

tions were obtained by the addition of sampled-data system theory to the mix. By 

applying H°° optimal control theory to  the repetitive control design problem (quan­

tifying the trade-off between performance and robustness) new insight into the repet­

itive control design problem was obtained. The new insight gained by applying H°° 

optimal control included directly applicable design procedures and new approaches 

to “classical” (designer based) control design. The continuous-time formulation of 

the robust performance problem of Chapter III suggests possible new approaches to 

classical repetitive controller design and holds the promise, subject to the availability 

of more powerful computers, of being a  directly applicable design technique. Chap­

ter III also provides a significant extension to existing H°° optimal control theory for 

infinite dimensional systems and raises issues with respect to obtaining exact mini­

mal realizations of transfer function matrices. The issues with respect to obtaining 

exact minimal realizations of transfer function matrices are discussed, and partially



www.manaraa.com

resolved, in Appendix C. The continuous-time formulation of the nominal perfor­

mance with robust stability problem of Chapter IV provides both multiple direct 

design procedures and multiple new approaches to  classical design. Furthermore, the 

resulting new direct design procedures can be carried out, with existing computational 

capabilities, for practical applications. In Chapter V we add sampled-data system 

theory to the mix and propose a precise definition of sampled-data repetitive control, 

which is a  natural combination of the practical requirements that give rise individu­

ally to sampled-data theory and repetitive control theory. We formulate a nominal 

performance with robust stability H°° optimal sampled-data control problem and a 

procedure for recovering controllers satisfying the natural definition of sampled-data 

repetitive control. Also in Chapter V, we extend existing sampled-data theory on 

obtaining discrete-time equivalent systems. The H°° optimal sampled-data repetitive 

control formulation of Chapter V holds great promise for direct design and the po­

tential for insight into classical design, but realization depends on the resolution of 

the present difficulties with calculating discrete-time equivalent systems. As is always 

the case in repetitive control design, we considered two degree of freedom control (i.e. 

two distinct controllers) throughout this dissertation.

In Chapter III we pose a robust performance H°° optimal control problem, see 

Definition 3.1.1. By constraining the controller C\ to have a repetitive structure we 

obtain the generalized repetitive structure of Figure 8 , which corresponds uniquely 

to the solution of the constrained problem. This generalized structure has obvious 

implications for classical repetitive control design, which should be the subject of
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further research. The constrained problem has the form of a vector H°° problem with 

a scalar infinite dimensional inner factor (e.g. a delay). New H°° optimal control 

theory had to be developed to solve this class of problems. The solution to this class 

of vector H°° optimal control problems is given by Theorem 3.2.1. The extensive 

derivation and proof of Theorem 3.2.1 appears in Appendix B. The extension of 

Theorem 3.2.1 to vector problems of higher dimensions is obvious. The extension 

to non-scalar infinite dimensional inner factors is not obvious, but the mathematical 

techniques used in the derivation should prove helpful.

In Chapter IV we formulate a nominal repetitive performance with robust sta­

bility design problem. The design problem is decoupled into a  finite dimensional 

design which stabilizes and approximately inverts the nominal plant and a two-block 

(nominal performance with robust stability) H°° optimal control problem for an in­

finite dimensional equivalent plant. The decoupling of control design in this way is a 

common technique when designing for performance and the limits to the decoupling 

are addressed by Lemma 4.1.1 and Lemma 4.1.2. The finite dimensional design to 

stabilize and approximately invert the nominal plant is fairly well understood and is 

not the subject of this dissertation. The resulting infinite dimensional two-block H°° 

optimal control problem is solved using a special case of the general theory of [95]. 

The solution to the special case is given by Theorem 4.2.1. This formulation leads 

to  the modified repetitive controller structure of Figure 17, where the novel feature 

is the inclusion of the inner factor, mp(s), corresponding to the R H P  zeros of non­

minimum phase plants. This new repetitive controller structure indicates a  path for
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future research into classical repetitive control design for non-minimum phase plants. 

Using properly selected weighting functions, see Section 4.6, the resulting controllers 

adm it low order approximations providing classical repetitive action with the modi­

fied repetitive structure of Figure 17, for direct designs. By formulating a  sensitivity 

improvement problem, see Definition 4.3.3, the very same solution has an alterna­

tive interpretation as the add-on portion of the new cascade repetitive structure of 

Figure 19. This cascade repetitive structure can, in turn, be thought of as either an 

add-on to an existing controller or a method for robustly cascading two repetitive con­

trollers. Once again, this has implications for future research on classical repetitive 

control design, i.e. research into the classical design of cascade repetitive controllers. 

Furthermore, the numerical results for the direct design are most promising and show 

direct applicability to practical repetitive controller design using existing computa­

tional facilities. Finally, this formulation can be extended to plants with significant 

nonlinearities by the addition of dynamic inversion control theory.

In Chapter V we consider H°° optimal sampled-data repetitive control, where 

by sampled-data we mean that the discrete-time controller will be designed directly 

against continuous-time requirements. A natural definition for sample-data repetitive 

controller design, see Definition 5.4.1, is the direct design of discrete-time controllers, 

with digital repetitive structures, satisfying continuous-time requirements. No previ­

ous work on sampled-data repetitive control satisfies this definition. Our procedure 

consist of two steps: obtaining the parameterization of all solutions to a repetitive 

performance with robust stability H°° optimal sampled-data problem, and the
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subsequent extraction of digital repetitive controllers from the parameterization of 

all solutions. The solution of the repetitive performance with robust stability H°° 

optimal sampled-data problem requires the computation of a discrete-time equivalent 

problem, from the continuous-time plant and requirements, as represented by the 

weighting functions. In an effort to accomplish this we extend the results of [5] to 

the general case, see Theorem 5.5.1. However, accurate numerical computation of 

discrete-time equivalents has not been adequately resolved. The parameterization of 

all solutions to the discrete-time equivalent problem is obtained by taking a bilinear 

transform and using the state space solution of [24] for the resulting standard prob­

lem. The problem of searching for the “most repetitive” solution is then formulated 

in terms of genetic algorithms. Genetic algorithms are a powerful new search tech­

nique that performs very well for highly nonconvex problems. All problems related to 

controller structure are highly non-convex [8]. The novel use of genetic algorithms to 

search parameterizations, of all controllers satisfying some norm-based optimization 

problem, for controllers possessing additional desirable properties, has great promise 

for a broad range of control applications. While our H°° optimal sampled-data repet­

itive control formulation cannot be fully evaluated until the problems with respect 

to computation of the discrete-time equivalent problem are resolved, the formulation 

appears to have the potential to be a practical and highly effective design procedure.
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Appendix A 

Notation

C : Set of complex numbers (complex plane).

C+: Closed right half plane, C+ =  {s € C  : f?e(s) > 0 }.

C_: Open left half plane, C_ =  {s € C  : Re(s) <  0}.

P(i2): Set of Poles of the rational function R.

V+(R): Unstable poles of R, V+(R) := {p G V{R) : fZe(p) >  0}. 

V-(R): Stable poles of i?, V -{R )  := {p G 'P(R) • Re(p) < 0 ).

L2: Hilbert space of square integrable functions on Re(s) =  0.

H 2: L2 functions which admit analytic extension to C+.

H 2: n x  1 vector valued functions with elements in H 2.

H 2 ’ Orthogonal complement of H 2 in L2, H 2 := L2 0  H 2.

L00: Banach space of functions essentially bounded on Re(s) =  0.

H °°: Essentially bounded analytic functions on C+.

IRH00: Rational H°° functions with real coefficients.

M H 2 := {M w :w  € H%}, where J l f i s a n x n  inner matrix. 

H(M): Orthogonal complement of M H 2, H (M ) = H 2 Q M H 2. 

P +: Orthogonal projection from L2 to H 2.

P_: Orthogonal projection from L2 to H^-
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Pff(Af): Orthogonal projection from L2 to H{M ).

Mw: Multiplication operator, M iv i := W x, for x  6  H 2, W  6  L°°.

T  f '. Toeplitz operator with symbol F ,Y p  = P +M f,

Tp: Hankel operator with symbol F, T f  =  P _ M f,

A*: Adjoint of the operator A.

F T: Transpose of the matrix F.

F*‘. Complex conjugate (Hermitian) transpose of the matrix F.

“Star” of the matrix R(s), R (s)* := RT(—s). 

ord(R)‘. Degree of the least common denominator of the matrix R.

Zp[0 ,oo):  { /(* ): / 0°° \f(t) \pdt <  oo}.

I? [0 ,o o ): { f { t ) : $  \f(t)\pdt <  oo, V T  < oo}.

^ p[0>r ] : { /(* ): /oT|/ W I ^ < o o } .

Ilp[q,t\ : The space of infinite sequences with elements in Zp[0 , r].

/rk: The space of infinite sequences with elements in IRn, where x  is an n-vector. 

l( i) : The unit step function.

6(t): The unit impulse function.

Halloo := sup{|F(s)| : Re(s) >  0} =  e s s s u p ^ lF ^ 'w ) ! } .

ess sup: The essential (almost everywhere) supremum (generalized maximum).

||D|j: Operator norm (largest singular value) of the matrix D.

|| A||: Operator norm, square root of the largest value of the spectrum of A.

<t(A): The spectrum on the operator A.

<T(j: The discrete spectrum (isolated singularities or singular-values) of an operator.
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<Td: The essential spectrum (cr =  o’dU^'e) of an operator.

||A ||e: Essential norm, square root of the largest value of cre(A).

Il/Mlla == { n / W I 2* } 1/S-

a \/b :=  m ax{a,6 }.

|5 |: Magnitude, or absolute value, of the possibly complex valued function S. 

RH P: Right half (complex, s =  a  +  ju>) plane.

L T I:  Linear time-invariant.

L C D : Least common denominator.

SISO :  Single input single output (system).

S I  MO: Single input multiple output (system).

M I  MO: Multiple input multiple output (system).

SVD: Singular value decomposition.
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Appendix B 

Derivation and Proof of Theorem 3.2.1

In this appendix we derive Theorem 3.2.1, thus proving necessity, and then prove 

sufficiency. We also give explicit formulas for constructing R ff and the singular-vector, 

x, corresponding to any a  which makes R a. Throughout this appendix we make free 

use, without comment, of the definitions given in Appendix A.

B .l Singular-value/SinguIar-vector Problem

We start by stating the first genericity assumption, which allows us to find the unique 

optimal performance, 7 opt, by solving the singular-value/singular-vector problem for 

the operator A.

A ssu m p tio n  1 (g en eric ity ) 7 opt =  ||A|| >  ||A ||e =  m ax  {||%|foc» ll-^ll}-

Assumption 1 is satisfied for a large class of practical problems. If it is not satisfied,
*

then the optimal interpolant,(Jt>p , is not unique.

R e m a rk  B .1 .1  Since 7 opt =  ||A ||, from (3.15), we see that j|A|| =  ||V̂ t||oo iff R \ =  

R 2 =  0. This follows because R i and R 2 are rational and Q i,Q 2 € H 00 and therefore 

cannot invert m.

138
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Under Assumption 1, we have ||A|| — where <rmor := max{cr : cr2 € crj(A)} 

is the largest singular-value of A. Hence, we consider the singular-value /singular- 

vector problem for the operator A, i.e. 0 ^  x  € H 2 is a singular-vector iff there exists 

<r >  0, such that (a 2I  — A*A) x  =  0, which can be written as (see Definition 3.2.1)

<t2x  -  P + M ^ 3M n i  -  M y , M v 2 P h ( M)
My,
M Vl

x  =  0. (B .l)

From the fact that MJp =  P +Mw*, we have

<r2x -  p +v3*v3x -  p+ [ v? v; ] P H{M) Vi
v2

x  = 0. (B.2)

R e m a rk  B . l . 2 Let w € H 2, then P h (m )W = w — P m h*w = w — M P + M *w.

Thus, we have

P  H( M)
Vi
V2

x  = Vi
V2

Vi
v2

x -  M P+ M

x  -  P+Af* 

x = M P -

x

Vi
v2

Vi
v2

x

Vi
V2

Ri
R 2

m*x. (B.3)

= m ( m '

=  M P -M *

Finally, we substitute back into (B.2), and get 

<j 2x  -  P + V;Vzx  -  P+ [ R \ I% ] m P_

R e m a rk  B . l .3 Thus the singular-value/singular-vector problem has a Hankel plus 

Toeplitz form, see e.g. [33],

(B.5)

Ri
R i

m*x =  0. (B.4)

(or2I - T t , 3Tv3 - r ^ r m^ )o ;= :0 , where R  := Ri
Ri

The problem is now in the form of a singular-value/singular-vector problem that can 

be solved using basic projection operations.
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B.2 Finite Rank Projection Equations

From the first two terms of (B.4), we have

-  P+V£V3x  = (<r2l  -  P + VJV3)x  =  P+(<72/  -  V£V3)x. (B.6)

By Assumption 1, <7max > ||^|loo> s0 f°r any <r of interest {a21 — V£V3) is nonsingular. 

Thus, the spectral factorization,

(a 2/  -  V*V3) =  G ? G ; \  Ga,G - 1 € (B.7)

is well defined. In operator notation, we have

=  (B.8)

Now we define a new vector y, related to the singular-vector x, by

y :=  M g - i x  =  G~l x  6 H 2 => x  =  Gay. (B.9)

Then, we substitute (B.9) into (B.4) and multiply by from the left, which gives

- M h P + [ R \  ^ ] m P _ Ri
R 2

m*Gay =  0. (B.10)

In order to simplify this expression, we note that 

M J .P +  [ M r; M r; ] =  M J„ [ M*r, ] =  P +M 0. [ M r. M r; ] , (B .ll)  

and make the following definitions

R := \ R i ] ‘ RiGff '

. R *. RiGa = GaR  and V  := ‘ Vi ' ' Vi Ga '

. f t . : V2Ga (B.12)
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Thus, we have

y — P+R*mP _Rm*y =  0. (B.13)

This equation is very hard (if not impossible) to directly solve for y, since it contains 

infinite rank projections. Therefore, we must simplify it by expanding it into com­

putable terms (finite rank projections). We define an orthogonal decomposition of 

the vector y, by

y = u + m v , u 6 H{m) C H 2, v 6 H 2 => m v  € m H 2 C H 2. (B.14)

Now, we expand (B.13) into computable terms. Starting with the rightmost projection 

operation, we have

P -R m *y  =  P -RmTu + P -R v  =  R{m*u) -  P +R(m*u) +  P ^R v. (B.15)

Then,

P+R*m(P-Rm*y) =  P +R*mR(m*u) — P +R*mP+R(m*u) +  P + R 'm P -R v

=  P+R*Ru — R*mP+R(m*u) +  P-R*mP+R(m*u) 

+ R*m P-Rv -  P -R * m P -R v  

— R* Ru — P_R*Ru — R*mP+R(m*u) +  P -R * m P +R(m*u) 

+ R*m P-Rv  — P -R * m P -R v . (B.16)

We define tij. := m*u 6 H 2 and substitute into (B.13), which gives

y =  R*Ru — P  „R*Ru — R*mP+Rux + P -R 'm P + R u x
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+ R ’m P -R v  -  P J ’m P J u .  (B.17)

Now we take the projections of y onto the orthogonal subspaces m H 2 and H (m ), to 

get equations for v  and u, i.e. v  =  =  P +m*y and u — P H(m)y = y — m vi

which gives

v — P +R* Ru±, — P +R*P+Ru± +  P + R *P -R v, (B.18)

and

(1 — R*R)u =  —P  _R*Ru — R*mP+Ru±  +  P -R * m P +Ru±

—rnP+R*Rux + mP+R*P+R ux

+ R *m P -R v — P -R * m P -R v  — m P+R*P_Rv. (B.19)

R e m a r k  B .2 .1  All o f the projections are now finite dimensional projections o f the 

two basic forms, P+/<7x and P - fg ,  where f  € L°° is rational and g± € H f  and 

g € H 2 are possibly infinite dimensional.

Define, f + :=  P +f  and f~  := P _ / .  Then, we have P+fg±  =  P + f+g± and P - f g  =  

P _ / “ <7, where /+  €  H 2 fl L°° and f~  € H f  fl L°° are rational

B.3 Projection Formulas

In this section we give formulas for the projection onto H% of f +gx, where / + 6

H 2 fl L°° is rational and g±. € H f  is possibly infinite dimensional; and for the dual

problem of taking the projection on Hf" of P - f~ g ,  where f~  €  H f  H L°° is rational 

and g G H 2 is possibly infinite dimensional. The solution of the first problem is just
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the portion of the partial fraction expansion of f + ( s ) g ± ( s )  corresponding to the poles 

of /+ (s ) . The only nontrivial part is the calculation of the coefficients for the poles 

of f + ( s ) .  For the general case we have that the coefficients a k- n of are given

by

=  ( ( s  ”
n =  1 , . . . ,  k, (B.20)

s=Pi

where p,- is a  kth order pole of f + ( s ) .  From Leibnitz’s formula, with / i( s )  :=  (s — 

P i ) k f + { s ) ,  we have

a k- n =  (̂ j) £ ( n 7 k )  (B-21)

The solution of the dual problem is just the dual of the above.

R e m a rk  B .3 .1  I f  we consider g±_ to be an unknown, then the projection represents a 

set o f interpolation constraints on the unknown g±. Furthermore, all o f the terms in 

the projection are linearly independent functions o f frequency and each term introduces 

an independent constraint on the unknown g±.

In this context it is clear that the repeated pole case is of exactly the same structure 

as the distinct pole case. Thus, we can consider the distinct pole case without loss of 

generality.

For the case where all of the poles of f +(s) are distinct, the projection onto H 2 is 

of the form

p+rwsiM= (b-22)
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where the entries of the row vector Pj+ are the terms of the partial fraction expansion 

of f +{s) and is a column vector with entries, ($ 5x); =  where the p,- are

the poles of f +(s). For the dual problem, we have

P - r ( s ) g ( s )  =  Pf - 9 „  (B.23)

where the entries of the row vector P j-  are the terms of the partial fraction expansion 

of f~ (s )  and 4>3 is a column vector with entries, (4>5); =  g ( p i ) ,  where the p,- are the 

poles of f~ {s).

B.4 Necessary Interpolation Constraints

In this section we derive necessary interpolation constraints on u and v, that must be 

satisfied for cr to be a singular-value of the operator A , see Definition 3.2.1. These 

constraints constitute a set of unknowns. We also construct a set of equations in these 

unknowns that must be satisfied in order for x  to be the corresponding singular-vector. 

Therefore, these equations are also necessary conditions for a  to be a singular-value. 

Several assumptions axe made in this section. Assumptions 2-3 are without loss of 

generality and simplify the construction. Assumptions 4-6 are not without loss of 

generality, but they ensure that the number of linearly independent equations equals 

the number of unknowns, and axe typically satisfied.

A ssu m p tio n  2 (g en eric ity ) No repeated poles in R \,R .2 , or R*R = V*V.

From Section B.3, Assumption 2 can be made without loss of generality. However, it 

allows the simple form of the projection formulas, (B.22) and (B.23), to be used. Now, 

we make the another simplifying assumption that is also without loss of generality.
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A ssu m p tio n  3 (generic ity ) 'P{Ri)r\'P (R2) =  0 and there are no pole-zero cancel-

Assumption 3 has no effect on the form of what follows. If the first condition is vio­

lated both the number of unknowns and the number of linearly independent equations

Under Assumptions 2-3 we can explicitly denote the poles of R. Denote the stable 

poles of R u  'P~{R\)i by »i, i = 1 , . . .  ,nj ,  and the unstable poles of R i, V+(R\), by 

/?i, i =  1 , . . . ,  lx. Similarly, denote the stable poles of R 2, V -(R 2), by or*, i =  ni +  

1 , . . .  , nj +  n2, and the unstable poles of f?2, ^ + (^ 2)5 by i — /i +  l ,  h + h-

Finally, denote V{Ga) =  V-{G a) by a,-, i =  n\ +  n2 +  1 , . . . ,  n := nx +  n2 +  n3.

R em ark  B .4.1 The following equations summarize the relationship between the poles:

A A>.

lations in forming R \ =  GaR \ and R2 =  G„R2.

in these unknowns are reduced by twice the number of common stable poles and three 

times the number of common unstable poles. If the second condition is violated both 

the number of unknowns and the number of linearly independent equations in these 

unknowns are reduced by the number of pole/zero cancellations.

(B.2 4 )

"PiVi) = V~(V2) = {a,, i =  ni +  1) • • • + n2} U {— f i i ,  i — h +  1 , . . . ,  /}, (B.25)

V{m \) =  7 > + K ) =  P+(J*i), V{m'2) =  7\{m*2) =  V+(R2), and (B.26)

V{V ) = V -{V ) = {a iy i = (B.27)

R em ark  B .4 .2  Let W  € L°° be a rational function, then

V (P +W ) = V .(P + W ), and V {P -W )  =  V+ {P .W ). (B.28)
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Under Assumptions 2-3, it can be seen that (B.18) and (B.19) are of the form

U =  +  I*2$2 +  (B.29)

and

(1 — V mV)u  =  P l$ l +  P-2&2 +  -^3^3 +  P ^ 4  +  Ps®5, (B.30)

where the interpolation constraints, on the (possibly) infinite dimensional components 

u, i; and «x =  m*u of the vector y =  u +  m v , are given by

’  U x ( -^ l )  ' '  « i ( o , )  ' '  » ( A ) '

:=

U l ( - A )  .

,  $2 :=
.  « i ( a „ )

,  $3 :=

. « ( A ) .

'  u ( - a t )

■

ji&

. «(“ <*«) .

, and $ 5 :=

. « (# )  .

and the row vectors of frequency functions are determined by

P + iT itu j. -  P+ R'P+Ruj. = : A * l  +  A $ 2, (B.32)

P + R*P -R v  =: P3$ 3, (B.33)

—R ’m P +Rus_ +  P - R 'm P +Ru± — 77zP4.iT  Ru±

-t-mP+R^P+Rux, =: P i$ i +  (B.34)

R * m P -R v  -  P - R 'm P .R v  -  m P + R 'P .R v  = : P3$ 3 , and (B.35)

- P - R 'R u  =: P4$ 4 +  (B.36)
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R e m a rk  B .4 .3 The rightmost projection operator determines the interpolation con­

straints and therefore the number o f unknowns (dimension o f the associated column 

vector), while the leftmost projection operator determines the form  o f the frequency 

functions (row vector entries).

R e m a rk  B .4 .4 As a practical matter, it is important to perform all pole-zero can­

cellations before taking the projections, in order to obtain the correct number o f un­

knowns.

If all pole-zero cancellations are not done before taking the projections, the extra 

unknowns, corresponding to the poles that were not canceled, will have coefficients 

that are identically zero.

R e m a rk  B .4 .5  From (B.22) and (B.23), it follows that when there is only one pro­

jection operator in a given term, the corresponding row vector necessarily has entries 

which are linearly independent frequency functions.

R e m a rk  B .4 .6 4>i,$ 3  and $ 5  each contribute I (the number o f unstable poles of 

R ) unknowns and $ 2  and $ 4  each contribute n (the number o f stable poles o f R) 

unknowns. So, there are a total o f 2n +  3/ unknowns.

Therefore, in order to solve for the unknowns, 2n -f 31 linearly independent equations 

in these unknowns must be found. We get I equations from (B.18) by evaluating it 

at i — 1 . . .  I.
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R e m a rk  B .4 .7  The lefthand side o f (B.18) evaluated at the /?,• is precisely $ 3 . Thus, 

these equations are clearly necessary conditions, since $ 3  already appears on the right- 

hand side.

R e m a rk  B .4 .8  Although there is no loss o f generality in Assumption 2, the compu­

tation o f these I equations is much more difficult fo r  the repeated pole case. That is, 

the right hand side must be differentiated, with respect to s, (k — 1) times fo r  a k th 

order repeated pole in either R \ or R 2 .

To get the remaining 2n +  21 required equations we consider (B.19). Since u 6 H 2, 

we know that the righthand side must equal zero at the unstable zeros of (1 — V*V), 

i.e. {7 i €  C+ : (1 — U*(7 i)V^7 «)) — 0}. Similarly, m*u — Ujl G H f  implies th a t either 

m* or the righthand side of (B.19) must equal zero at the stable zeros of (1 — V mV),
A A

i.e. {7 ,- 6 C -  : (1 — Vr*(7 , )V(7 i)) =  0} . Thus the following assumption is necessary 

in order for there to be enough equations.

A ssu m p tio n  4 m*(7 ,) ^  0, fo r all 7 ,- G C+, such that (1 — U*(7 .)V(7 ,)) =  0.

Under Assumption 4, the righthand side of (B.19) must be zero at the stable zeros 

(1 — V*V). Therefore, the righthand side of (B.19) must equal zero at all of the 

zeros of (1 — V*V). To have enough linearly independent equations we must have the 

number of zeros of (1 — V*V) be twice the number of poles of V. Thus, we require 

another assumption.

A
A ssu m p tio n  5 k = 2(n + 1), where k is the number o f zeros o f (1 — V*V).
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Assumption 5 is not without loss of generality and consists of two parts. First, it
A  A a

requires that ord(V*V) ~  2ord(V), which is a standard assumption. Second, it
A A A A

requires that the number of zeros of (1 — V 'V )  equals the number of poles of V 'V , 

which is almost always satisfied. Finally, since the equations obtained from repeated 

zeros are not linearly independent, we require one more assumption.

•A. A

A ssum ption  6 There are no repeated zeros in (1 — V*V).

Assumption 6 is satisfied for almost all <r. Assumptions 4-6 are sufficient to ensure 

that the number of linearly independent equations in the unknowns is equal to the 

number of unknowns. Assumption 6 can be restated in terms of the eigenvalues of a 

Hamiltonian matrix, see Remark B.4.10 below.
A A

We now show that, the zeros of (1 — V 'V )  are the eigenvalues of a Hamiltonian
A A A A A

matrix. Again, we consider 1 — V 'V  =  1 — R 'R  =  0. From the definition of R, we

have

0 =  (1 -R * R )  = l - G * G 0{R\RA+ R ^R 2). (B.37)

If we multiply the last expression by G~*G~l , then the zeros axe unchanged. Thus, 

we have

o =  g ; 'G ; '  -  (r ^r , + s ^r ,)  =  -  (r^r ,  +  r \ r , +  r^r ,)

=  <t2 -R ? R  = <r2 -  F'O Q 'F =  a 21 -  F'F. (B.38)

The zeros of (a 2I  — F*F) are the poles of (cr2/  — F 'F ) -1, and F 'F  =  F 'F ,  where

F  =  [ V f  V2t  . Therefore, the following lemma can be used to calculate the

zeros of (1 — V 'V ).
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L em m a B .4.1  Let F  =  C (s l — A)~lB  -f D be a minimal realization. I f  a  > ||A ||e, 

then the poles of (a21 — F * ^)-1 are the eigenvalues of

A  + B 'C ,
C TC  + C Ta Ca - ( A  + BaC<r)T

- B 'B f
(B.99)H .(F )  := 

where DTc Da :=  <r2I  -  DTD, B a := B D ;1 and C„ := D f D r C. 

P roof: F* =  (C ( - s I  -  A )~ 'B  +  D)T =  - B T(sI  +  Ar ) - 1Cr  +  DT, so we have 

(<t2/  -  F*F) = (<r21 -  Dt D ) -  D t C{sI  -  A )"15  +  B t {sI  +  A Ty xCTD

+ B t (sI  +  A t )~1Ct C(sI  — A)~lB . (B.40) 

By Lemma 3.2.3, D~x exist for all a  > ||A ||e. Thus, we have

{a21 -  F mF) =  DTa {I -  C0(s l  -  A)~lBa +  B j ( s l  4- A T)~l C j  

+ B j(s I  +  A T)~xC TC (sI -  A )~xB a)Da.

We observe that

/  -  Ca(s l  -  A ) -XB ,  +  B ? (s l  +  AT) - lC j  + B j ( s l  + A T)~lCTC (sI -  A)~lBa

(B.41)

=  / - C . - B l
0 ' Ba '

( s i  + AT) . C?  .
. (B.42)

A  A
Hence, the poles of (a2I  — F*F) are the poles of

I  — C , - B l
' ( s i  - A )  0

- l
' B a '

—CTC (sI + AT)

-1
(B.43)

which, by the matrix inversion lemma [43], are the poles of [sJ — Ha(F)] . Since 

(A ,B ,C ,D ) is a minimal realization of F, we have that the poles of (a21 — F 'F ) -1
a

are the eigenvalues of H<r(F). □
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V A

R e m ark  B .4 .9  I f  F  is strictly proper, (i.e. D =  0), then Ha{F) reduces to

H ,(F )  :=
A -<j ~2B B t  

CTC - A T (B.44)

A  A
R em a rk  B .4 .10 From, Lemma B.4 .I  it follows that, the zeros o f (1 — V*V) are the 

eigenvalues o f Ha{F). So, Assumption 6 a can be restated in terms of the eigenvalues
A

of H„(F). That is, Assumption 6 is equivalent to: The k eigenvalues, 7 i, i =  1 , . . . ,  k, 

o f Ha{F) are distinct.

Under Assumptions 1-6, the following set of 2n+3/ equations in 2n+3/ unknowns, 

are necessary conditions for <7 to be a singular-value of A:

v{0i) ' ■ A(/?i)' '  P m ' '  P m '

1 — • $ 1  + * $ 2  + •

v(A) . A (f t ) . .  h m . .  h m .

'  f l ( 7 0  ' '  p m '  p m  '

0 = j $ 1  + j $ 2  + 1

. P M  . . ft(7fc) .

$ 3, (B.45)

$3

'  P M ' '  P M '

.  pM .

$ 4  +
.  P M .

$ 5. (B.46)+

It is clear from the construction that these equations are independent so long as the 

7 ,• are distinct. Note that any u constructed from these equations will necessarily be 

in H(M).

To simplify (B.45) and (B.46), we make the following definitions:

(B.47)
' P m ' ' P m  * ‘ A(j9i) '

Ari :=
.  P m .

, r2 :=
.  h m .

, (r3 + /):=
.  P m .
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‘ f t(7 i)  ' '  P sili)  '

ri :=

. A  (7*).

, r2 :=
. P2 M  .

, r3 :=

. ft(7*) .

(B.48)

r 4 :=
P*{ 7i) 

P M  .

, and r s :=
Pb( 7i)

. ^ (7 * )  .

(B.49)

Since the lefthand side of (B.45) is precisely $ 3, (B.45) and (B.46) can be rewritten

as

0 =  ? i$ i +  r2$2 +  r3$ 3y 

0 = n $ i  + r2$ 2 + r3$3 + r4$ 4 + r5$ 5. 

Finally, we define

Ra :=

(B.50)

(B.51)

fi r2 r3 0 0
r l  r 2 r 3 r A r 5

(B.52)

The m atrix Ra is, by construction, singular whenever a is a singular-value of A. 

That is, the set of 2n +  3/ equations in 2n + 31 unknowns representing the necessary 

conditions for a  to be a singular-value can be written as, R a$  =  0 , where 

& : = [ * ? ■

B.5 Sufficient Conditions for Singular-values of A

Thus far we have constructed a (2n +  31) x (2n +  3/) matrix, R a, that is singular 

whenever a  is a  singular-value for the operator A, defined by (3.16). In this section 

we prove that if R„ is singular, for some tr, then this value of a  is a  singular-value 

of the operator A. This implies that the singular-values can be found by searching
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for the values of a  tha t make Ra singular. Furthermore, given a  singular R„, we can 

find a  $ , such that R a$  =  0, and construct v and u from <&, using (B.29) and (B.30). 

Thus, for any singular-value, <r, R a is singular, and we can calculate the corresponding 

singular-vector, x  =  G^y =  G„[u 4- m v). Thus, by construction we have necessity 

(the only if part). The proof of sufficiency (the if part) is a little more subtle, but is 

much shorter. First, we prove that if R c is singular, i.e. there exist a ^  0, such 

that R 0<f>' =  0, then the pair (er, ar), corresponding to  is a singular-value/singular- 

vector pair for A.

P ro o f  [sufficiency]: Suppose that we have a vector /  0 satisfying R a$ ‘ — 0, 

construct v and u from (B.29) and (B.30), by using in place of $  on the righthand 

sides of (B.29) and (B.30). Then, to complete the proof we need to show that, $  

corresponding to v  and u, from (B.29) and (B.30), is precisely By construction 

we have

V =  A * ' i  4- A $  2 +  3 =  A $ 1  4- A $  2 4- 3 (B.53)

and

(1 -  V*V)u  =  Pl $[  +  P2$ ' +  +  P4V4 4- P5$ '

— -f .P2$ 2 "I" p3$3 4" ^4^4 4" Rs$5’ (B.54)

Thus it is sufficient to show that P\ P2 P3 P4 P5 has linearly independent 

entries as functions of the frequency variable. From (B.34) we see that P\ comes only 

from mP+R*Ru±. and has linearly independent entries of the form • Further­

more, the term  R*mP+Ruj_ ensures that P2 has independent entries since its con- 

tributions are independent of all the others due to the multiplication by R*(s)m(s).
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Thus, each entry of P% has a term  of the form Similarly, from (B.35) we

see that P3  has linearly independent entries and each entry has a  term  of the form 

R • Finally, from (B.36) we have that P4  has linearly independent entries

of the form and P$ has linearly independent entries of the form From

the preceding it is easy to see that [ Pi P2 P3  P4  P5  ] has linearly independent 

entries.

R e m a rk  B .5 .1  The coefficients a,-, 6,-, c,-, d; and e,- of the entries are non-zero.

Indeed, if any of the coefficients were zero this would mean that there was a  pole-zero 

cancellation in one of the rational functions which would mean that the unknown 

(interpolation point) corresponding to this zero coefficient is not needed. □

B.6 Construction of the Singular-vector x °

The singular-vector a:0, corresponding to a  =  amax :=  7opi, can be constructed directly 

from the interpolation constraints, $°, obtained from Ramai =  0. Specifically, we 

have x° — Gamaxy° = GCmax(u° +  mv°). Now, v° and u° can be constructed from 

$° using (B.29) and (B.30), i.e. t>° =  A $ ?  +  and (1 -  V*V)u° =

P i$ l +  P2$ 2  +  ̂ 3 ^ 3  +  -̂ 4^ 4  +  From (B.32) and (B.33), it can be seen that v° is 

purely rational. Similarly, from (B.34) through (B.36), it can be seen that u° can be 

written as u° =  11° +  mu®, where and tt® 3X6 rational functions. Thus, x° can be 

written as x° =  g + m h , where g :=  Gau\ and h :=  G>{u0 +  U2) are rational functions.
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Appendix C 

Realization of Transfer Function Matrices

In this appendix we look at the issues and problems associated with obtaining exact 

minimal realizations of transfer function matrices. We show that the relationship 

between the Markov parameters and the coefficients of state space realizations is 

Vandermonde in nature. We also show that the standard methods, e.g. [12], which 

use Markov parameters, axe averaging methods and thus only provide estimates of 

the state space realization. The averaging is necessary due to the fact that the rela­

tionship is numerically ill-conditioned. We present an exact method for obtaining the 

state space realization from the Markov parameters. It is, of course, only usable for 

“low” order systems with “small” dynamic range of pole locations, where “low” and 

“small” both depend on the available computational accuracy (machine precision). 

We also present a method that has no more numerical difficulties than the single input 

single output (S IS O ) case. There are numerous direct methods for S I S O  transfer 

functions that do not have significant numerical problems, i.e. are not numerically 

ill-conditioned, e.g. the “tf2ss” command in MATLAB. Our direct method for ob­

taining exact minimal state space realizations of transfer function matrices requires 

the construction of a minimal block diagram consisting of proper S IS O  transfer func­

tions. This method is completely general and is illustrated by solving the example
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arising in Chapter III. Our method for constructing this minimal block diagram is 

based on the familiar least common denominator (LCD)  of all minors of the transfer 

function matrix method for determining the characteristic polynomial, see e.g. [12]. 

Typically it is quite simple to construct the minimal block diagram as is the case for 

the problem considered in [73]. For certain pathological cases it becomes somewhat 

involved, but it is still quite tractable, as we show by means of a couple of examples.

C .l Vandermonde Structure of the Relationship

In this section we show that the mathematical relationship between the Markov pa­

rameters of a transfer function matrix and any state space realization has a Vander­

monde structure. The Markov parameters are defined by

G(s) = Y,mk)s-i°, (c.i)
fc=0

where the H(k)  are the Markov parameters. It can be shown, see [12], that they are 

related to all state space realizations, (A,B,C,D), by

H(0) = D, H(i  + l) = C AiB , i =  0 , 1 , 2 , . . . .  (C.2)

Let G(s) be a p x  m  transfer function matrix, then the H(k)  are also p x m  matri­

ces. For simplicity we consider the distinct eigenvalue case, which is generic in that 

matrices with distinct eigenvalues are dense in the set of all matrices [43]. Thus, the 

numerical properties of matrices with distinct eigenvalues are representative of the 

numerical properties of all matrices. Without loss of generality, let A be a diagonal 

matrix with diagonal elements (eigenvalues) A,-. Then, we have the following set of
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equations:

E
i=i

J2  CijXjBjk
3=1

E C u XjBjk
3=1

H i k ( 1) 

Hik(2) 

Hik( 3)

^He,

-  A2

A3 *• "ifc>

(C.3)

(C.4)

(C.5)

t l Cijy - 1B jk =  Bik(n) = : k*k.
i=i

Let A =  [ Ai - ■ • An ] and ajk = CijBjk, and define

hik :=
'h }k '

, <*ik :=

r  i  i

, and A :=

‘ A0 * 
A1

. q"* . A""1 .

(C.6)

(C.7)

where A* =  [ A* • • • Ajj . Then we have the Vandermonde relationship given by

Acki* =  hik. (C.8)

This Vandermonde relationship is inherent to all state space realizations, since they 

are all equivalent and related by similarity transforms. Notice that only n Markov 

parameters are required to calculate the strictly proper part, (A, B , C), of the state 

space realization. The standard methods [12], on the other hand, typically use 2n 

Markov parameters. The averaging over a  larger data set helps overcome the numer­

ical ill-conditioning of the relationship. The drawback of the averaging methods are 

that the answer is not exact even for systems where direct use of the Vandermonde 

relationship is numerically sound.
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To illustrate the problems with the approximation properties of the standard 

Markov based realization methods we present a third order example for which the 

exact Vandermonde relationship can be used. All calculation were done using MAT- 

LAB. Using the random number generator we obtain the random third order 3 x 2  

transfer function matrix

' - ' i

9u

912

921

922

931

932

d

9n 912 
921 922 

. 931 932 .
, where

0.7254s3 +  0.2096s2 +  0.3581sl -  0.0140, 

0.9995s3 -  0.2321s2 +  0.0223sl +  0.0236, 

0.8886s3 +  0.5431s2 +  0.1100s1 +  0.0005, 

0.2332s3 +  0.3300s2 +  0.8220s1 +  0.0629, 

0.3063s3 +  0.1610s2 +  0.5361s1 +  0.0097, 

0.3510s3 +  0.7905s2 +  0.5093s1 +  0.0376, and 

1.0000s3 -  0.7939s2 -  0.5872s1 +  0.1097.

(C.9)

(C.10)

(C .ll)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

Using the direct Vandermonde method (which can be readily verified to give the cor­

rect transfer function m atrix to within a few machine epsilons, 10-16 for MATLAB), 

we obtain

‘ 1.2055 0 0 ' ' 1.1550 0.8485 ‘
0 -0.5710 0 , B  = 0.4816 0.4237
0 0 0.1594 0.3626 0.1788

’ 0.9286 -0.4564 -0.1853 ‘ ' 0.7254 0.9995 ‘
C  = 1.1550 -0.0811 -0.1279 , and D  = 0.8886 0.2332

0.6646 -0.4816 -0.3626 0.3063 0.3510
. (C.17)



www.manaraa.com

159

For comparison we consider the Markov based method of [12], which uses singular- 

value decomposition (SVD ) reduction of the 2n x 2n Hankel matrix of Markov pa­

rameters. To allow for direct comparison we diagonalize the result and obtain

A

A =
1.2085 0 0 '

A

, B  =
' -1.0854 -1.1718 '

0 -0.3976 0 -0.4957 -0.6518
0 0 1.1740 . -0.6590 0.3903

C  =
-0.7220 -0.4518 0.1978 ‘ ‘ 0.7254 0.9995 '
-0.9204 -0.5203 0.3033 , and D  = 0.8886 0.2332
-0.8701 -0.4884 -0.6599 0.3063 0.3510

. (C.18)

Note that D  and D  are calculated in exactly the same way and are therefore iden­

tical. Note that the error in the poles (diagonal entries of A) increases as you go 

down the diagonal. This is because they are ordered according to the magnitude of 

the corresponding singular-value. Increasing error with decreasing magnitude of the 

singular-values is an inherent property of the SVD . Specifically, the error in the first 

pole (1.2055) is only 0.25 percent, the error in the second pole (—.5710) is a whopping 

30 percent, and the last pole has an incredible 636 percent error. These errors are 

fairly typical, although sometimes the errors are much smaller, particularly the worst 

case error is often less than 100 percent. The approximation error in the B  and C 

matrices is also significant, thus the approximation of the zeros is also poor. To more 

closely examine the error in the zero locations, define G to be the transfer function 

matrix corresponding to (A, B , C, D). Then, we have

14
d

9 l l  9\2  
921 922 

. 9 31 932 .

where (C.19)

gn  = 0.7254s3 -  0.5941s2 + 0.0313s1 — 0.4035, (C.20)
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& 2  =  0.9995s3 — 1.4876s2 +  0.5552s1 — 0.2117, (C.21)

021 =  0.8886s3 -  0.6379s2 -  0.0573s1 -  0.5083, (C.22)

022 -  0.2332s3 +  0.1691s2 +  0.1631sl -0 .7917 , (C.23)

031 =  0.3063s3 — 0.1214s2 -f 0.1199s1 — 0.4513, (C.24)

032 =  0.3510s3 +  0.3250s2 -0 .1 8 4 7 s1 -0 .8095 , and (C.25)

d =  1.0000s3 -  1.9849s2 +  0.4716s1 +0.5641. (C.26)

Clearly, the numerators (zeros) of the transfer functions are highly inaccurate. To see 

how strongly these errors show up in the zero locations, we consider the roots, r n ,  of 

0 ii and the roots, r n ,  of 0 n

r u  =  {0.0381 -  0.1635 ±  ;0.6924} and r „  =  {1.680 +  .1602 ±  j0.3946}. (C.27)

The error in the real zero is very extreme (over 2900 percent) and the error in the 

complex zero is quite significant (2.02 percent for the real part and 43 percent for 

the imaginary part). The large error one may encounter with the indirect Markov 

methods indicates the utility of using an exact method whenever possible. The ex­

act Vandermonde method is almost never usable in MATLAB. Indeed, for seventh 

order systems and moderate dynamic range of pole locations the Vandermonde ma­

trix becomes so ill-conditioned that reasonable solutions from it axe impossible using 

MATLAB. However, using arbitrary precision packages, such as Maple or Mathemat- 

ica, the only limit is the computation time and memory usage, which both increase 

very rapidly, due to the numerical ill-conditioning of the Vandermonde structure. The 

direct method described in the next section avoids this problem because it does not
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use Markov parameters. It is a  direct method in the same sense as the direct methods 

used for S IS O  systems in any standard control design software package.

C.2 Exact Minimal Realizations

The method presented in this section is a  completely general method for obtaining the 

state space realization of all proper rational transfer function matrices. Furthermore, 

the resulting realization is exact, up to the errors on the order of the machine precision 

associated with numerical multiplication and addition. The method consists of three 

steps:

1. Obtain a minimal block diagram consisting of proper rational S IS O  transfer 

functions.

2. Obtain minimal state space realizations of the individual S IS O  blocks.

3. Combine the individual realizations in accordance with the minimal block dia­

gram.

The first step is very straight forward, except for pathological cases, and algorithms 

could be readily developed and implemented. The second step is already implemented 

on any standard control software package. The third step is very straight forward 

and has been implemented in MATLAB’s fi-tools toolbox. Specifically, the MAT­

LAB function is “sysic.m”, which calculates the overall state-space description of 

the system from a detailed description of the “sys(tem) i(nter)c(onnection)”. Ide­

ally, a single algorithm would implement all three steps from a single command line
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(program call). This is certainly achievable for the non-pathological cases. Certain 

pathological cases may be better handled with the aid of a graphical interface such 

as MATLAB’s SIMULINK.

C.2.1 Construction of the minimal block diagram

The minimal block diagram is constructed with the aid of the LC D  of the minors 

method for determining the characteristic polynomial. Pathological cases are those 

in which a pole/zero cancellation occurs during the construction of a minor. We will 

show how to handle such cases by considering a specific example. If the entries of the 

transfer function matrix have no common poles, then the minimal block diagram can 

be written down directly with each entry being a separate block. Thus, we consider 

only cases with common poles. Typically transfer function matrices arising from 

physical systems will have common poles. In general transfer function matrices arising 

from physical systems will have a common zero corresponding to each common pole. 

In this case the minimal block diagram can be written down by inspection with the 

aid of the LCD 's  of the minors. If there are not corresponding common zeros, then a 

slightly modified procedure must be used. We give an example showing how to handle 

such cases. The procedure is not complicated and it is believed that this case can 

be easily handled by a general algorithm for exact minimal state space realizations. 

Finally, we show how easy it is to construct the exact minimal realization for typical 

problems such as the one in Chapter III.
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Consider the transfer function matrix 
b ■

£ 5  . (C.28)G = 4(5+1) *(*'

. 5(4+3) 5(5+4) .

From the minors consisting of the individual elements, we know that the characteristic 

equation must includep(s) =  s (s+ l)(s+ 2 )(s+ 3 )(s+ 4 ). Generically, it would include 

an s2 term  from the minor consisting of the determinant of G. The pathological case 

we are interested in is the case where the second s term cancels and p(s) is the 

characteristic equation. This will be true iff Qad =  46c, so letting a — 2, 6 =  3, c = 

1 , and d =  1 makes p(s) the characteristic polynomial. Thus, the minimal block 

diagram must contain only one block with a pole at the origin. Consider the minimal 

block diagram shown in Figure 32. Setting this diagram equal to G results in the 

equivalence conditions: a i =  a 2 =  03  =  0:4 =  —7 , /?i =  —(6 +  7 ), /?2 =  —(6  +  

2 7 ), /?3 =  - (5  +  3 7 ), @ 4 =  - ( 6  -f 4 7 ), r i6 ci =  a, 2ri6c2 — 63r26ci =  c, 4r26c2 =  d. 

Using a =  2 , 6 =  3, c =  1 , and d =  1 and letting 6  =  1, the last four conditions 

become

ricx =  2 r xc2 =  2/3 ( r  9Q.
r 2cj =  1/3 r 2c2 =  1/4 ' yj

These equations are satisfied for infinitely many choices of the remaining variables. 

One solution is 77 =  1, r2 =  1/6, Cj =  2, and c2 =  3/2. We have already arbitrarily 

chosen 6 =  1 and we must still arbitrarily choose 7 in order to specify a solution, thus 

the block diagram of Figure 32 had two extra degrees of freedom. Choosing 7 = 1  

yields the block diagram shown in Figure 33 which is a minimal block diagram for G.

We now look at the case where the common poles do not have corresponding 

common zeros. Without loss of generality we can consider the biproper case, since
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T +

s +  4

S +  2

Figure 32: Solution of the pathological case, general form.

yi

*2

- ( s + 5 )
s +  4

- ( S +  2)

yi

y2

Figure 33: Particular solution, pathological case.

if the entries are both strictly proper they have a common zero at infinity. Consider 

the transfer function matrix

G = (»+a)(»+fc) («+c)(a+d) j (C.30)(«+l)(a+2) (*+l)(®+3)

where we assume that the zeros are not common and do not cancel with any of the 

poles. Now we simply introduce zeros at infinity by decomposing the entries into the 

sums of constants and strictly proper transfer functions. Specifically, we can write G
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as

G — [ f  k ] +  [ (j+jJjj+j) (,+ij(M-3) ] • (C.31)

Now we simply factor out the common pole and draw, by inspection, the minimal 

block diagram shown in Figure 34. In this way common zeros can be obtained when­

ever needed by the addition of constant gain paths. While such situations require a 

little more attention, they are still completely straight forward and algorithm devel­

opment should not be difficult.

5 +  2
s+ e

s +  g

Figure 34: Minimal block diagram, non-common zeros.

C.2.2 Practical example

The details of obtaining the state space realization required for the numerical example 

in Chapter III are now given. While the transfer function matrix to be considered here 

does not represent a physical plant, it does come from physical considerations and thus 

has common zeros corresponding to its common poles and contains no pathologies. 

The only exception to this is that the zeros W\  have been purposely chosen to cancel 

with poles of N , see Section 3.4. Due to the sparse structure of G, this does not cause
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any complications. The transfer function matrix is given by 

G
W \N  0
WXW2 -W {W 2D  

0 - W 2D
(C.32)

Denote the numerator of a transfer function X  by X n and the denominator by X d.

After pole/zero cancellations, we have

0

-  « [ “ ; ] •  <c -33)G  :=

N n
W d*
W?W ? W ?W ?Dn
wfw£ WfWfD*

n W ?Dn
^ wfD*

V
, and let V i

.2/3.

Even without considering the minors, we can see that the the transfer function W iW 2 

acts on both the inputs in generating the middle output, y2. Thus, it seems reasonable 

to  put this term down as a  block connected to y2 (see Figure 35). It is also clear that 

the second input, u2, always acts through the transfer function D. So, we place a 

block with transfer function D  a t the input u2. For this example that is all that is 

required to come up with the minimal block diagram. It can be readily verified that 

the characteristic polynomial is W dW dW dW dDdD d, which is in accordance with the 

block diagram in Figure 35.

U1

U2

I >

Vi

y2

y3

Figure 35: Minimal block diagram for the example.
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R em ark  C .2.1 We could at this point simply write a M ATLAB “m-file” describing 

the block diagram in Figure 35 and use the p-tools command “sysic.m”. However, for 

illustrative purposes we present the abstract composite system in terms of the state 

space representation o f the individual blocks.

Let the transfer functions, I<, of the individual blocks be given by 

Ti =

T3 =

N n _  W?W? 
> *2WfD*

-W ?

w f w f

Dn
w f ,  and T4 -  D d.

(C.34)

(C.35)

Denote the state space realizations by 7\ := (Ai, A»Ci, A)> T? =: (/12,BU,C2,D2), 

T3 =: (A3,A,C3,A), and TA =: (A*, A>C,.,A), where the subscripts of the A , 

C , and D matrices correspond to the output variable, and the subscripts of the B  

matrices correspond to the input variable. With a little algebra it can be seen that 

the resulting minimal multiple input multiple output (M IM O )  state space realization 

G =: (A, B , C, D) is given by

A =

A t 0 0 0
0 Aj 0 —B VCZ 
0  0  A3 B ZCZ
0 0 0 A z

B  =

C =
Ci 0 0 0
0 C2 0 —DiCz
0 0 C3 D3Cz

and D =

\ B i 0
Bv —BVDZ
0 BZDZ

. 0 b 2

* A 0
A —A A
0 A A

(C.36)

An algorithm was implemented in MATLAB that generates the state space realization 

automatically given the parameters that constitute G.
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C.3 Conclusions

The inaccuracy of Markov parameter based methods clearly illustrates the need for a 

new approach. The above approach appears to be a viable solution. The next step is 

to develop detailed algorithms suitable for implementation in software packages such 

as MATLAB. This should not be difficult for the non-pathological cases. Another 

issue that should be addressed is balanced realizations. A nice feature of the Markov 

based methods is that they provide balanced realizations, however this advantage is 

completely inadequate to compensate for the inaccuracy of the zeros. More work 

needs to be done with respect to incorporation of a certain level of balancing in the 

direct method. It seams reasonable to expect that with a combination of balancing 

of the individual S IS O  realizations and appropriate scalings in the block diagrams 

that “nearly” balanced realizations could be obtained. An interesting investigation 

would be to compare the results of an SVD  based balancing of the direct realization 

with the balanced realization resulting from the Markov methods. It is expected that 

for most, if not all, cases the direct method will still prove superior. Finally, the 

extension of this direct method to descriptor systems should be straight forward.
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Appendix D

Proof of Theorem 5.5.1, Sampled-data Extension

In this appendix we give a detailed outline of the proof of Theorem 5.5.1. We start 

out by presenting several useful identities and making a couple more definitions. 

Then we derive explicit matrix formulas for the various finite rank operators given in 

Theorem 5.5.1 in terms of the sampling period, r.

D .l Mathematical Preliminaries

Let Cq  := ( B i  + D ^ D q D u B i ) D ^ D q C i  and s \ / t  : =  m a x ( s , t ) .  The following 

identities, which can be readily verified using elementary mathematics, will be used 

freely in the sequel, without comment:

J j e -^ j  = e -Â B RB le -A*% 

i  { e >l94 /  ] * * }  “  e~AQ' BQCieA'i

Y  {e~At [ 0 /  ] e*"#} =  - e~A’BiCReA«*, 

^  {eA'a [ /  0 ] eA* '}  = eA*aC{CQeAQa,

ds
[e~Aa [ 0 I  ] e^* }  =  e -AaBiCQeA*B,

(D.l)

(D.2)

(D.3)

(D.4)

(D.5)

169



www.manaraa.com

170

^ { e A<[ 0  l ] e ~ A<ia} = - e AtB 1CQe-A^% and

JQ f ( s \J t )d s  = j (  f(t)d s  +  J  f(s)ds.

(D.6)

(D.7)

A A

The kernels of the adjoints ( Bx, Cx, D \X,D \2 ) of the operators (Bi, Ci, D u , A 2) are:

b'x(s) := cj(s) := eA'* C l d[2(s) := 5*®(a)*C7 +  Z?J2I

and ^ ( i ,  a) :=  -  f)C? +  ^n^(® “ *)■ (D.8)

A

Note that depending on whether an operator, H , maps to time functions (h(t,s)  is 

the kernel) or to constants (k(s) is the kernel) we have either

H f{ t )=  f  h (t,s )f(s)d s  or H f{ t)=  f  h(s)f(s)ds.
Jo Jo

D.2 Explicit Formulas for the Various Operators

(D.9)

By inspection of (5.10) the composite operators we must find explicit formulas for
A A A A A A A A A A

are: B \R B X, CXQC\, B iD xxQC\} CXQDX2 , Dx2QDX2 i and B iD xxQDi2 < 

D.2.1 Explicit formula for B \R B *

By definition we have

I)W  =  £ « { -<  

=  <?*(-<

r r ^ r )  0 
0 0

j \ A R ( r - * ) B R B *eA'{T-*)d3

+  f Q eAR(t~a)BRB \ tA *(T~a)d3}  +  D RB mxt A' {T- ^

H ? (r)  0 
0 0

„A r t  I r,A*T
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+eARt ^ e"^ * ■ I ' -,T a \
0 1 + DRB ;eA^ T- tK (D.10)

Noting that

r T } ( r )  0 1 f  r„(r) T 1 2 ( t )  '

0 0 J [ rn(r) r22(r)
'  I  ' '  / ' '  I

0
—

0
and Cr

0 =  - D RB l  (D .ll)

we have

(R B t)(t)  =  - C ReARt r n'(T) (0 -12)

-As 0 I e M T ■ r r ^ r )  ■© 0

Now we can compute the desired composite operator

B XR B : = -  T  e ^ ^ B i C n e ^ 'd s  T l ' ^
Jo

= - e Ar (e 

Expanding and simplifying, we have

A A 6 f  =  r , 1( r ) n i , (T).

D.2.2 Explicit formula for C{QC\

($& )(* ) =  Cq j - e ^ ‘ T “ (r) J J £  t A^ - * B QC itA‘ds

(D.13)

(0.14)

+ j *  e ^ - ^ B q C x e ^ d s }  + D q C xe

— Cq j - e ^4 q J eAqT
+  eAc)t

0
I

‘  0 ' As \
t >

I I
0;/

+  DqC\e At

A q t TrUr) o p A t _  &A qt
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°At -  PAQl
[!]} + Dq Cxe* \

which, noting that C q

( t o i ) ( t )  =  C q e AQl

= —DqCi , simplifies to 

T r f W T i^ r )
- I

Now, we have

CIQCX =  f T eA' aC;CQ eAqads 
Jo

Tiil (T)T„(r)
- I

T „(r) Tu (r) _  r A 
T21{r) T22(t) I '  U \)

Noting that j /  0 j T,i(r) Tia(r) 
T a(r) T22(r)

TnV)Tia(r)
- /

Tiil0-)Tia(r)
- /

=  0, we have

=  -T r^ rJT w C r) .

A A A A

D.2.3 Explicit formula for B \D * n Q C i  

Using (D.16), we have

{D^QdiW) = ^  B lt^ -^ C ^ C q t^ d s  + D ^ C Q e ^

=  {B*e~A,t {eA*a [ /  0 ] e'l«#) [  +  D^Cge***} 

which, using the fact that D \xCq — B{ [ I  0 ] =  —C q ,  gives

T W rJT nO -)

T u W i a f T )
- /

{D 'n Q C M )  =  -C g e* * Ti?(r)Tia(r)
- I

Thus, the desired result is given by

BiD 'uQ Ct = -  [ T eA^ B xCQeA^d a  
Jo

T r . 'M T n M
- /

(D.15)

(D.16)

. (D.17)

(D.18)

(D.20)
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= - ( [ 0  /  ] eAqT — eAj [ 0 / ] ) T uW a(r)
- / (D.21)

which gives

A  A  A A

BiD'u QCi =  T a ( r)  -  T M rJ T tfM T ia M  -  eAr.

D.2.4 Explicit formula for C ’Q D n

First, we must compute the first composite operator

(D.22)

( Q A i W = Cq [-< rr.'M o 
0 0

jT  eAq(T- a)BQCx J ‘ eA^~T)drB2ds 

+  J* e ^ - ^ B q C x  j *  eA{a~T)drB2ds}

+ D qC i^f(t)B2 + f  q (t,s)dsD i2 
Jo

= C q ^ - e Aqi T “ (r) J j j \ A^ T- a)B QCxeA^ - rh { s - r ) B 2dsdr

+  jT  jT  e W - ^ B q C ^ - ^ B A i t  -  s ) l( s  -  r)dsdr}

- C q j<*,* f T ^ r )  0
0 0

j f  eAq{T~r)dr -  J* c^Q(*~r)drJ- B QD l2

-{-DqD i2 +  D qC i'$(t)B2

=  C g |- , - A q » 0
I e~ArB 2dr

+ / eA q t I . - A q I 0
/

[Tr;w !]r^(- 
£ ■

-C q  j e ^ ‘ T r i Q ( r )  q  j jT  eA^ T~r)dr -  j f  e ^ (t- r)<*r J B q D X2

-\~DqD\2 +  DqC\^1{£)B2, (D.23)

 ̂ e -^ S a rf rJ
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which, after some algebra, gives

(<?£«)(*) =  C q  je * * 1 |  T ”  (r) J  £ e W - 'U r  -  £  j  B q

+D qD i2. (D.24)

Now, we can write

C[QDX2 =  £  eAUdtC;D QD12 +  j  jT  cAHC{CQeA^ d t T t f t r )  0 
0 0 * ( r )

-  £  £  eAUC;CQ^ * - rh ( t  -  r )d td r j Bq

=  V W I D qDu + |  { e f  [ /  0 ] e ^ [ T“ (r) °Q *(r)

=  W {T)C iD QD v  + {eA*T

-  £  £  e A U C ; C Qe A^ d t e - A^ d r ^  B q  

I  0 ] $ ( r )  — [ T ^ f r )  o]*(r)

—eA*r [ /  0 ] £  eA^ T~rU r ^ B Q. (D.25)

So, we have

C{QDU = —Tf*(r) [ * „ ( t)  * „ ( t)  ] B ,.

D.2.5 Explicit formula for D \ 2Q D vi

(D.26)

The derivation of this one is a  bit more subtle and involved than the preceding ones, 

so we will give a little more detail at the outset. By definition we have

D \2QDu  :=  [  d\2{t){QDl2){t)dt 
Jo  

=  jT  [ b ;  j f ' ^ ‘~ U sc ;  + b ; 2} (Q b a )(t) it.

Let V u  := f 0T D \2(QD\2){t)dt. Then, using (D.24), we have

(D.27)
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Z>12 =  D\7.Cq { / eA^ d t T i7 ( t ) 0 
0 0 $ ( r )

- £  J* e ^ - ' U r d t }  B q  +  £  D*u D QD 12dt

=  D'UC„ j $ ( r )  [ T »  <T) °  ] * ( r )  -  l ! ( r ) J  Bq  +  rD ^D q D n -  (D.28)

Now, using (D.24), we can write

D*l2QDi2 = V l2 +  B \ f T V'(t)dtC 'l DQD12
Jo

+ B ; j*  e~AU £  e ^ 'C lC q e ^ d td s  

- B ; [ T [  e~A' a [ TeA''C ;C QeA« l ( t - s ) l ( t - r ) d t e - A*rdrdSBQ 
Jo Jo Jo

= T>12 + B ; f T V*(t)dtC;DQD 12 
Jo

? J ( T )  0 
0 0 $ { t ) B q

T rA r)  0 
0 0+ B ; £  t~ A'* (eAU [ I  0 ] eA«‘) [  ds

~Bi F J ? - I 1 ° 1

=  v 12 +  b ; [ T v* (t)d tc ;D QD l2
Jo

+B'2 j \ A^ ~ ' U s \ l  0 ] T (r)  T “ (r)  I  $ ( t ) B q

—B 2 [ I  0 ] $ ( r )  T » (r) I  * (r )B q 

- B ;  jr  eA'(r-* d s  [ /  0 ] / ;  eA* T- r)drBQ

+ B *JT  j f e_ /rV 4 > V r) I 1 °  1 eAQ(a^ T)e~AQTdrdsBQ' (D‘29)

Noting that J, 0 ] T (t ) |  q =  /  0 ] ,  we have
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D n Q D u  =  V 12 -  B* [ * „ ( t ) * ,3(r) ] T :H r)  0 
0 0

$ ( r )0 g

+ B ; \  I  0 ] / ;  J ‘  eA^ TUrdsBQ +  B2* jT V m(t)dtC ;D QD 12. (D.30)

Thus, after some algebra, we have

D ^ Q D u  =  [ 8 $  ] { « ( r )  [ T » (r
‘( r )  0 

0

A  A  A

L(r) 0 
0 0

$ ( r )  -  j *  j  B q  +  D n DQD u . (D.32)

$ ( t ) -  f i ( r ) }  0 g

-\-t D \2D q D \2. (D.31)

D.2.6 Explicit formula for B i D ^ Q D u

The derivation of the last composite operator is even more involved.

Define V n (t) :=  /0T D l1(QDi2)(t)S(s -  t)ds =  D ^ Q D u ) ^ ) ,  which gives

V n (() = D-n CQ |eJ«‘ f T« 1

Using this definition, we have 

(D'n Q D n)(t)  =  V n (t) + B \  £  eA' ^ d s C l D QDx2

^ B mx ^e~AU J \ A' aC[CQeA^ d s  Tll^ T  ̂ J

-  r  e~AU r  eA'aC:CQeA*adse-A*rd r \B q  
JO J t \ / r  J

=  T>n (t) + B{ j r  eA^ d s C \ D QDX2

+ £ iVf ( r - 0 [ /  0 ] T(r) T» (r) °Q $ ( t )B q

- B {  I  0 e*** T l l ' ( r )  °n  $ ( r ) B g

$ (r)

- B ^ 7^  [ I  0 ] $ (r)B g
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+ B^e-AU / V * (lVr> I  0 eA* W T)e -A*rdrBQ. (D.33)
Jo

After making cancellations, as in the previous subsection, we have

Ti?(r) 0 
0 0

+ B f [ /  0 ] j*  e ^ ^ d r B q .  (D.34)

Once again omitting the algebra, we have 

(b 'u Q D n ) m  =  Cq { jf' e ^ - ’rfr -  eA« ‘ T“ (t) “ ] * ( t ) } b ,

-\-D^DqDi2' (D.35)

Now, we can compute the final desired composite operator 

B iD ^ Q D n  =  j f V T £  e -AtBiCQeA* 'dse-A*TdrBQ

Tul(r) 0 
0 0

—eAr J *  e~A*B \CQeAqads

+  [ T eAsdsBiD*n DQD12 
Jo

=  [ 0 I  ] $ ( t ) B q  -  # ( t )  [0  l ] B q

$ { t ) B q

- [ 0  /  ] T (r)

Thus, we have

A  A A  A

BiD*n QD\2 =

? h l (r) 0 
0 0 $ ( t ) B q  +  V W B ^ D q D n .  (D.36)

Bq- V { t )B2. (D.37)

D.3 Summary of proof

The proof is essentially complete. All that remains is to plug the expressions for 

the above operators into the discrete-time equivalent system representation given in 

Theorem 5.5.1 and do a little arithmetic.
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